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Nachrichten der Österreichischen Mathematischen Gesellschaft . . . . . . 65

Erratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Neue Mitglieder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Dodekaederstern — Titelseite: Vor dem neuen Gebäude der Fakultät für Mathe-
matik der Universität Wien am Oskar Morgenstern-Platz 1 (Roßauerlände) wur-
de am 28.11.2013 eine Skulptur einer algebraischen Fläche enthüllt, die dieselbe
Symmetrie wie dasjenige reguläre Dodekaeder aufweist, in dessen Ecken die 20
Singularitäten der Fläche liegen. Die Gleichung ” f = 0“ dieser Fläche wurde in
der Forschungsgruppe von H. Hauser im Rahmen einer Diplomarbeit bestimmt.
Mit der Symmetriegruppe G∼= A5×Z2 des Dodekaeders ergibt sich das G-invari-
ante Polynom f als eine geeignete Kombination von bekannten Erzeugern u,v,w
von R[x,y,z]G:

u = x2 + y2 + z2, v = (x2−ϕ2y2)(y2−ϕ2z2)(z2−ϕ2x2),

f = 5c(2ϕ−3)v− (1−u)3 +
5

27
cu3 (ϕ = 1+

√
5

2 , c = 81).

Für mathematische Details siehe: Alexandra Fritz und Herwig Hauser, Platonic
Stars. Math. Intelligencer 32 (2010), 22–36. Hintergrundinformation zur Skulptur
an der Universität Wien finden sich auf http://www.dodekaederstern.cc.
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The FWF-Special Research Area
“Quasi-Monte Carlo Methods:
Theory and Applications”

Gerhard Larcher, Michael Drmota, Peter Grabner,
Peter Hellekalek, Roswitha Hofer, Peter Kritzer,
Gunther Leobacher, Friedrich Pillichshammer,
Robert Tichy, Arne Winterhof

Univ. Linz, TU Wien, TU Graz, Univ. Salzburg,
and Austrian Academy of Sciences

1 Introduction

In December 2013 the Austrian science fund (FWF) granted a special research
area (SFB) on the topic “Quasi-Monte Carlo Methods: Theory and Applications”.
This SFB – which is intended for two four-year periods and which started work
in February 2014 – is coordinated by Gerhard Larcher (speaker) and Friedrich
Pillichshammer (co-speaker), both from the Johannes Kepler University Linz. It
connects ten research projects, led by Michael Drmota (TU Vienna), Peter Grab-
ner and Robert Tichy (both TU Graz), Peter Hellekalek (Paris Lodron Univer-
sity Salzburg), Roswitha Hofer, Peter Kritzer, Gerhard Larcher, Gunther Leoba-
cher, Friedrich Pillichshammer (all Johannes Kepler University Linz), and by Ar-
ne Winterhof (RICAM, Austrian Academy of Sciences). The SFB funds make it
possible to finance about 20 new Postdoc and PhD positions.
The work in this research project will be accompanied and monitored by an inter-
national advisory board of highly renowned experts in Quasi-Monte Carlo (QMC)
Methods. The chair of the advisory board is Harald Niederreiter, who is a central
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figure in the field of QMC methods. In his research, he has frequently cooperated
with the project leaders for many years, and he will thus play a central role in this
SFB.
There is a variety of “big open problems” in QMC, problems partly arising from
theory, partly arising from applications. It is the aim of this SFB to efficiently ex-
change the skills of the participating research groups, to analyze the new modern
techniques in QMC and integrate them into the joint work, to develop powerful
new methods and so to contribute in an essential way to solutions of the most
challenging problems in the field. Further it will create a center of excellence for
the theory and the application of QMC methods to be visible worldwide.
“Quasi-Monte Carlo Methods” include all methods in which most carefully cho-
sen quasi-random-point sets are used to carry out simulations in the framework of
sophisticated and highly developed modeling environments, for obtaining quan-
titative information in different branches of applications. The study and develop-
ment of QMC methods requires

• the generation, investigation, and analysis of distribution properties of finite
or infinite sequences in all kinds of regions;
• the development, investigation, and analysis of suitable theoretical models

on which the applications of the QMC methods are based, and in particular
the derivation of error bounds for QMC methods in these models;
• the efficient implementation of the theoretical models and of the algorithms

for the generation of the (sometimes very large and high-dimensional) qua-
si-random point sets, and the development of sophisticated software;
• the concrete application of the QMC methods in different areas, the dis-

cussion of the implications and of the performance of the applied QMC
methods.

Consequently, many different branches of mathematics are involved in the com-
prehensive investigation and development of QMC methods, most notably number
theory, discrete mathematics, combinatorics, harmonic analysis, functional analy-
sis, stochastics, complexity theory, theory of algorithms, and numerical analysis.
Furthermore, profound knowledge of the branches of applications in which the
QMC methods are intended to be used is necessary. The theory and application
of QMC methods is a modern and extremely lively branch of mathematics. This
is demonstrated by an enormous output of research papers on this topic over the
last decades, and by the great and growing success of the series of the biannual
international conferences on “Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing” (MCQMC), which started in 1994 in Las Vegas and was
most recently held in Sydney in 2012 and in Leuven (Belgium) 2014.
It is the aim of this article to give a short insight into some of the most relevant
topics in QMC which will be investigated by the research groups participating in

2



this SFB. In Section 2 we give a very brief introduction to the basic facts on and
techniques used in QMC. In the remaining Sections 3–12 we give examples of
some of the main concrete research topics studied in the SFB.

2 Quasi-Monte Carlo Methods: Basic facts and
techniques

Many quantitative problems in various fields of applications (e.g., finance, engi-
neering, economics, physics, medicine, biology, . . . ) involve the task of approxi-
mately evaluating (sometimes very high dimensional) integrals. This is particular-
ly often the case when one has to calculate the expected value or the variance of a
random variable whose value depends on many random sources.
The basic (quasi-) Monte Carlo approach to evaluate such integrals (say of a func-
tion f over an s-dimensional unit cube [0,1]s) is, to choose N points x1, . . . ,xN in
[0,1)s and to approximate the integral by the average value of f at these sample
points, i.e., ∫

[0,1]s
f (x)dx≈ 1

N

N

∑
n=1

f (xn).

In the pure Monte Carlo approach the N sample points are chosen (pseudo-)ran-
domly. In this case the expected [!] error (i.e., the difference between the true
integral value and the approximation) is essentially given by a constant depending
on f times 1/

√
N.

In QMC methods the sample point sets are chosen deterministically such that
the point sets show certain well-distribution properties, and sometimes further
structural properties, depending on the class of integrands we are dealing with. In
this case the basic error estimate is the fundamental Koksma-Hlawka inequality
(see, for example, [13, 18, 27, 30, 36]):∣∣∣∣∣

∫
[0,1]s

f (x)dx− 1
N

N

∑
i=1

f (xi)

∣∣∣∣∣≤V ( f )D∗N({x1, . . . ,xN}),

where V ( f ) denotes the variation of f (in the sense of Hardy and Krause) and
D∗N({x1, . . . ,xN}) denotes the star-discrepancy of the point set {x1, . . . ,xN}. The
star-discrepancy is defined as

D∗N({x1, . . . ,xN}) = sup
B

∣∣∣∣AN(B)
N
−λ(B)

∣∣∣∣ , (1)

where the supremum is taken over all axis-parallel boxes B in [0,1)s anchored at
the origin (i.e., which are of the form B = ∏s

j=1[0, t j)), where by AN(B) we denote
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the number of indices n ∈ {1, . . . ,N} for which xn is contained in B, and where λ
is the s-dimensional Lebesgue measure.
For an infinite sequence S = (x1,x2, . . .) of points in [0,1)s we denote by
D∗N(S) the star-discrepancy of the point set consisting of the first N elements
of the sequence. The sequence is called uniformly distributed, if and only if,
limN→∞ D∗N(S) = 0.
So obviously one of the main tasks in the theory of QMC methods is to analyze
the discrepancy of point sets and point sequences, and to provide point sets or
point sequences with low discrepancy in a (sometimes very high-dimensional)
unit-cube. These tasks – which often lead to deep problems in fields like number
theory or combinatorics – are in the center of interest of the SFB and in particular
of the projects which will be described in short in Sections 3, 5, 6, 8, 10 and 11
below. It is known that in every dimension s and for all N there exist point sets
{x1, . . . ,xN} ⊆ [0,1)s with star-discrepancy D∗N({x1, . . . ,xN})�s (logN)s−1/N.
Depending on the class of functions one is dealing with the particular integra-
tion problem. However, sometimes not only distribution properties of the point
sets, but also further structural properties may play a crucial role. To give but one
example: Assume that we know that the integrand f is periodic with period one
in each coordinate and that all its partial mixed derivatives up to order α exist
and are continuous. Then it can be shown that it is of advantage to use so-called
good-lattice point sets for numerical integration. These are point sets of the form

xn =
({

n
a1

N

}
, . . . ,

{
n

as

N

})
with n = 0,1, . . . ,N−1, (2)

with given integers a1, . . . ,as. QMC algorithms based on good-lattice point sets
are also known as lattice rules, and they were introduced independently by Hlawka
and Korobov by the end of the 1950s.
It is known, that for all dimensions s and all N there exist a1, . . . ,as ∈ {1, . . . ,N},
such that the integration error for functions of the above form is of order
O((logN)sα/Nα).
This is just one classical and well known result in this direction, and – of course
– there exists a magnitude of much more subtle integration rules in the modern
theory of QMC methods. With the analysis and the development of such effi-
cient integration (and also approximation) rules especially the projects described
in Sections 4, 7, 8, 9 and 10 will be concerned.
Finally, the application of QMC methods in concrete problems in most cases needs
a suitable adaptation of the methods to the problem. For example, the integration
region might not be a unit cube but a more general manifold (e.g., the sphere),
or certain variance and variation reduction methods might have to be applied, or
the special simulation problem needs point sets with additional pseudo-random
properties. With such problems especially the projects described in Sections 4, 9,
11 and 12 will be concerned. When dealing with concrete applications in this SFB,
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then in almost all cases we will work with showcase problems from mathematical
finance.
In the following we highlight some of the main topics of our research in the SFB.

3 Subsequences of automatic sequences and uni-
form distribution

This project part is led by Michael Drmota and it aims at constructing uniform-
ly distributed sequences with the help of proper subsequences of automatic se-
quences.
Automatic sequences are sequences t(n) on a finite alphabet that are the output of
a finite automaton. The Thue-Morse sequence T (n) = s2(n) mod 2 is one of the
most prominent examples of an automatic sequence. (Here and in what follows
sq(n) denotes the q-adic sum-of-digits function).
One of the main motivations for the research in this project part is the recent
progress on the so-called Gelfond problems [19] on the prime values and on poly-
nomial values of the sum-of-digits function modulo m. Gelfond conjectured that
the subsequence sq(p), where p runs through all primes, as well as subsequences
of the form sq(P(n)), where P is a polynomial of degree greater than 1, are uni-
formly distributed on the residue classes modulo m. (The cases of primes and
squares of these 40 year old conjectures have been solved by Mauduit and Rivat
[32, 33], and there is a partial solution for polynomials by Drmota, Mauduit and
Rivat [17]). Furthermore, Drmota, Mauduit and Rivat [16] recently proved that the
subsequence T (n2) = s2(n2) mod 2 of the Thue-Morse sequence is actually a nor-
mal sequence, that is, every possible 0-1-block appears with the correct asympto-
tic frequency. Consequently this sequence can be used to generate a Quasi-Monte
Carlo sequence. Since automatic sequences (like the Thue-Morse sequence) can
be efficiently generated this gives rise to a completely new efficient construction
of Quasi-Monte Carlo sequences.
Therefore the first overall goal of this subproject is to provide a more systematic
treatment to these kinds of problems and to characterize the distributional beha-
viour of subsequences of automatic sequences t(n) of the form t(P(n)) for poly-
nomials P of degree greater than 1, t(bncc) (for c > 1), and t(p) for primes p. It
is certainly too ambitious to expect a complete solution in the general case, ne-
vertheless we will work on (at least) the following questions: to study t(n2), to
study t(bncc) for specific non-integer c > 1, to improve results on sq(P(n)) for
polynomials, and to study t(p) for special (e.g. invertible) automatic sequences.
The second overall goal of this subproject is to study similar questions for more
general digital expansions like the Zeckendorff expansion that is based on Fi-
bonacci numbers. The Zeckendorff sum-of-digits funcion sZ(n) is the (minimal)
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number of Fibonacci numbers that are needed to represent n. It is well known that
sZ(n) is uniformly distributed modulo m and that αsZ(n) is uniformly distributed
modulo 1 for irrational α. However, nothing is known on sZ(n2) or sZ(p). It should
be mentioned that sZ(n) mod m is not an automatic sequence, nevertheless it is ex-
pected that sZ(n) has similar distributional properties as sq(n), also regarding its
subsequences.

4 Distributing points on spheres and manifolds: mi-
nimal energy and designs

This project part led by Peter Grabner aims for a more detailed investigation of
point sets of minimal energy and spherical designs. Especially, estimates for the
discrepancy of such point sets are of interest; quantifying the distribution proper-
ties of such point sets is necessary for applying them to numerical integration.

Minimal energy point sets. For a given compact manifold M ⊂ Rd+1 and a set
of N distinct points XN = {x1, . . . ,xN} ⊂ M, the Riesz s-energy is defined as
Es(XN) = ∑i 6= j ‖xi− x j‖−s. A configuration XN , which minimizes Es among all
N-point configurations, is called a minimal energy configuration. Several questi-
ons are of interest in this context:

• the asymptotic behavior of the minimal energy for N→ ∞
• the (weak-*) limiting distribution of the measures νN = 1

N ∑N
i=1 δxi

• the discrepancy between these discrete measures and the limiting measure.

One motivation for studying this question is quite classical: how do N mutually
repelling particles distribute on a surface?

• For s = 1, d = 2 these are particles under a Coulomb potential on a surface.
• For s→ ∞ this optimization problem becomes the problem of best packing

(cf. [8]).
• The resulting point distributions for moderately large N occur in biology

(optimal phyllotaxis, viral morphology).

The case s < dim(M) can be studied by methods from classical potential theory
(cf. [29]). The distribution of minimal energy point sets approaches the equilibri-
um measure. For s≥ dim(M) the situation changes completely. The corresponding
energy integral diverges for all probability measures. Techniques from geometric
measure theory could be applied in [21] to show that the limiting distribution µ(s)M
of the minimal energy distributions is normalized dim(M)-dimensional Hausdorff
measure on M, if M is rectifiable.
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In [21] it was shown that for s > d the minimal energy of an N point subset XN on
a d-dimensional rectifiable manifold behaves like

Cs,d

Hd(M)s/d
N1+s/d,

where Hd denotes the d-dimensional Hausdorff measure. For s tending to infinity,
C1/s

s,d has a limit that is related to the best-packing constant.

Spherical designs. A spherical t-design is a finite set of points X ⊂ Sd such that

1
#X ∑

x∈X
p(x) =

∫
Sd

f (x)dσ(x)

for all polynomials p of degree ≤ t, where σ denotes the normalized surface mea-
sure on Sd (cf. [10]). In [10] a lower bound of order td could be given, which was
shown to be only attained for small values of t. Only recently, it could be shown
that O(td) points suffice to obtain a t-design (cf. [4]).

5 Arithmetic primitives for uniform distribution
modulo 1

The setting underlying this subproject led by Peter Hellekalek is the following. We
are given three mathematical objects: X , ω, and f , where X is a nonempty set, ω=
(xn)n≥0 is a sequence in X , and f : X → C is a function on X . Suppose that X and
f are such that I( f ) =

∫
X f is defined. It is a fundamental property of any notion

of uniformly distributed (u.d.) sequences in X that, for a given u.d. sequence ω,
the sample means SN( f ,ω) = (1/N)∑N−1

n=0 f (xn) converge to the expectation I( f ),
if the sample size N increases to infinity, for all functions f in a suitable function
class F defined on X .
The above notions call for an appropriate structure on X . Integration requires a
measure space structure on X . The concept of u.d. sequences in X leads to the
need for construction methods for such sequences, which, in their turn, demand
arithmetics on X . If we also want to use some kind of harmonic analysis to study
the difference between SN( f ,ω) and I( f ), a short study of [25] will convince the
reader that a (compact abelian) topological group X is a suitable mathematical
environment.
In this subproject of the SFB, we start our research on the s-dimensional torus
(R/Z)s, which we represent by the compact abelian group X = [0,1)s with additi-
on modulo one. For a given sequence ω in [0,1)s, it is clearly important to measure
the uniform distribution of ω. The best known figures of merit employed for this
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task are discrepancy and diaphony (see [18, 27, 36]). During the recent years, ma-
ny other figures of merit for u.d. sequences have been developed and relations to
extremal integration errors in certain function spaces have been established (see,
for example, [12, 13]).
The first goal of this project is to find a unifying general concept for these figures
of merit. We will study a generalized version of the spectral test, which is a con-
cept based on so-called convergence determining classes of functions. Examples
are the trigonometric functions and the Walsh functions. The methods and results
developed in [9, 22, 23, 24] will serve as starting points.
The second goal concerns the construction of finite and infinite sequences on the
s-torus with good uniform distribution behavior. We will employ the arithmetical
structure of the b-adic numbers Qb in a new construction method that is related
to the method of good lattice points (see [36, 46]) and to some duality principles
(see [37, 45]).
The third goal is about arithmetic primitives. In the construction principles behind
cryptographic primitives and behind pseudo-random number generators, the ite-
ration of a given update function f : S→ S on a finite state space S plays a central
role. We are interested in the question of how to describe the long-term behavior
of the orbits x, f (x), f 2(x) = f ( f (x)), f 3(x), . . . of a given point x ∈ S in depen-
dence of certain properties of f . What are the appropriate mathematical models to
rate different update functions with respect to their (bit-) mixing behavior? Due to
the finiteness of S, there is no asymptotics. Two different approaches to this kind
of question can be found in the survey papers [26, 44].

6 Finite-row digital sequences and related hybrid
sequences

One main aim of this project part (which is led by Roswitha Hofer) is to dee-
pen the study of hybrid sequences with at least one digital component-sequence.
Hybrid sequences are built by concatenating the components of two or more dif-
ferent types of low-discrepancy sequences or in the original idea of Spanier [48]
by combining low discrepancy sequences with pseudo-random sequences. The in-
tentions are multiple: combining the different structures and/or advantages of the
component sequences, providing new types of sequences, discovering new types
of low-discrepancy sequences, etc. The difficulty we face when studying the dis-
tribution of hybrid sequences is to work out proper methods which can handle
the different structures of the component sequences. Hybrid sequences with one
or more digital component sequences appear as particularly hard to study. Digi-
tal sequences are constructed by the digital method introduced in [35]. The digital
method is an algorithm that generates the n-th point of the s-dimensional sequence
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(xn)n≥0 by operating on the digits of n in base q and at whose heart are s doubly
infinite generating matrices. It should be emphasized here that the distribution of
the sequence is mainly determined by the specific choice of the generating matri-
ces, and the main computational effort of the algorithm lies in the multiplication
with those matrices. In particular, for hybrid sequences so called finite-row digi-
tal sequences, which are generated by matrices satisfying that each matrix row
contains only finitely many nonzero entries, seem to be promising.
This project part contains partial problems which are relevant for the investigati-
on of hybrid sequences with at least one digital component-sequence and which
are interesting as number-theoretical problems per se. An interesting problem is
to determine specific relations between special generating matrices, which for ex-
ample yield certain correlations between the components of the generated digital
sequence. This problem seems to be related to combinatorial objects such as bi-
nomial type sequences of polynomials and generalized versions. Thereof such re-
lations between generating matrices are not only interesting for the investigation
of hybrid sequences but may also be interesting for efficient construction algo-
rithms of digital sequences. Furthermore, the current methods for investigating
hybrid sequences need information on the distribution of specific subsequences
of the component sequences. As a part of this project we want to deepen recent
investigations of subsequences of digital sequences.

7 Approximation of integrals and functions by new
types of quasi-Monte Carlo algorithms

In this project part, led by Peter Kritzer, we consider recent trends in the theory
of QMC algorithms applied to problems of integration and approximation over
suitably chosen function spaces. A particular emphasis is laid on high-dimensional
problems where it is necessary to control how the error of an algorithm depends
on the dimension of the problem.
A prominent topic in this project part is that of function approximation by means
of QMC (and, more generally, linear) algorithms. The basic problem is to study
classes of functions defined on a domain D⊆Rs which usually can be represented
by an expansion of the form

f (x) = ∑
k

f̂ (k)ek(x),

where the ek form an orthonormal function system and where the coefficients f̂ (k)
are given by f̂ (k) =

∫
D f (x)ek(x)dx.

The approximation algorithms considered in this project frequently work as fol-
lows. We first choose a finite set A of indices k corresponding to the typically
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large coefficients f̂ (k) of the functions considered. Then, the coefficients f̂ (k) are
approximated by a suitably chosen QMC algorithm QN,s( f ,k) using N integration
nodes. That is, we approximate f by

AN,s( f )(x) := ∑
k∈A

QN,s( f ,k)ek(x),

which makes it necessary to control both the error of a QMC integration rule and
the error of truncating the series expansion of f . The error of an approximation
algorithm AN,s is measured in, most notably, the L2 or L∞ norm. If the function
class we consider is a normed space, we frequently use the so-called worst-case
error (i.e., the supremum of the error over the unit ball of the space) as a quality
criterion for approximation algorithms.
In our error analysis, we study how the error of an approximation algorithm de-
pends on two quantities: the number N of integration nodes used in the QMC algo-
rithm for approximating the coefficients f̂ (k), and the dimension s of the problem.
It is crucial to also include the dependence on the dimension, as our algorithms
should ideally work for high-dimensional problems, and we would like to avoid a
curse of dimensionality, i.e., we would like to achieve an approximation error that
does not depend exponentially on s. If the latter situation occurs, we say that we
can achieve tractability, a concept that has been introduced by Woźniakowski in
[52]. As outlined in the seminal paper [47] by Sloan and Woźniakowski, one can
achieve tractability of multivariate algorithms in certain weighted function spaces,
where the influence of different groups of variables is modeled by weights.
So far, there have been numerous results on function approximation based on
QMC or related algorithms for functions in certain weighted reproducing kernel
Hilbert spaces, as for example in [11] and [28]. In these and in related papers,
functions defined on the s-dimensional unit cube [0,1]s that can be represented as
Fourier or Walsh series are considered.
For many of the previous results, one had to make rather restrictive assumptions
on the function classes considered, such as smoothness or periodicity assumpti-
ons. It is one of the main goals of this project to develop approximation algorithms
that also work for more general function classes and to relax some of the restric-
tions we had to make until now. As first examples, it is intended to study cosine
spaces of non-periodic functions defined on [0,1]s and Hermite spaces of functi-
ons defined on Rs.
In all problems of high-dimensional integration and approximation considered in
this project, it is our goal to provide constructive algorithms.
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8 Improved discrepancy estimates for various
classes of sequences

The aim of this project part, which is led by Gerhard Larcher, is to give improved
discrepancy estimates for several types of point sequences in an s-dimensional
unit cube, but also to give general discrepancy estimates for whole classes of se-
quences.
It is the so-called “big open problem” in the theory of uniform distribution to de-
termine the best possible order for the discrepancy of point sets in an s-dimensio-
nal unit cube. As already mentioned in Section 2, it is known that in every dimen-
sion s and for all N there exist point sets with discrepancy D∗N �s (logN)s−1/N,
and that in every dimension s there exist infinite point sequences with discrepan-
cy D∗N �s (logN)s/N for all N. Let us concentrate on infinite point sequences
in the following. Examples for such sequences are Halton sequences, or digital
(t,s)-sequences in the sense of Niederreiter.

However, for s ≥ 2 it is not known until today whether the order D∗N �s
(logN)s

N
for the discrepancy of infinite sequences in the s-dimensional unit cube is the best
possible order or not (for s = 1 it was shown by W.M. Schmidt in 1972, that the
order is best possible). The corresponding best lower bound for s ≥ 2 currently
known was given by Bilyk, Lacey and Vagharshakyan in [3]: There are positive
constants cs and δs such that for every sequence S in [0,1)s we have

D∗N(S)> cs
(logN)s/2+δs

N

for infinitely many N ∈ N. Here δs is a positive, but very small constant which
goes to 0 for s tending to infinity.
Indeed, until now even for seemingly very simple types of two-dimensional se-
quences the correct order of discrepancy is not known. A basic example for such
a sequence is the simple 2-dimensional Halton sequence in bases 2 and 3.
The Halton sequence is defined as follows: For a nonnegative integer n and an
integer b≥ 2 let n = nrbr +nr−1br−1+ · · ·+n1b+n0 be the base b digit represen-
tation of n. Define the radical inverse function φb by

φb(n) :=
n0

b
+

n1

b2 + · · ·+
nr

br+1 .

Then the 2-dimensional Halton sequence in bases 2 and 3 is given by

xn = (φ2(n),φ3(n)) for n = 0,1,2, . . . .

A further example is the really simple hybrid sequence

xn = (φ2(n),{n
√

2}) for n = 0,1,2, . . . .
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For both of these two simple sequences we do not know the correct order of their
discrepancy.
It is the main aim of this project part to improve – and in the best case to find
the correct order of – the upper and lower discrepancy bounds of frequently used
sequences like Halton sequences, digital (t,s)-sequences in the sense of Nieder-
reiter, and of certain types of hybrid sequences.

9 Adapting QMC algorithms to the simulation
problem

The project, which is led by Gunther Leobacher, is located at the interface between
QMC methods and applications in finance and natural sciences. Hereby the main
questions are how to (re-)formulate a given high-dimensional integration problem
to make it more suitable for QMC.
One of the most fruitful approaches known is to express the problem as an expec-
tation of a function depending on independent standard normal variables and con-
catenate the function with a carefully chosen orthogonal transform. Well known
examples of general purpose transforms are provided by the Brownian bridge con-
struction or the principal component analysis construction (PCA)construction of
Brownian paths. More specialized orthogonal transforms, which take the form of
the integrand into account, exist as well. For very high-dimensional problems ano-
ther important requirement is that the transform can be computed sufficiently fast,
whereby the benchmark is the complexity of the PCA construction for Brownian
paths, with computational cost O(n log(n)) for an n-dimensional problem. We call
this problem of finding a fast efficient orthogonal transform “FEOT problem”.
It is a curious fact that the choice of any orthogonal transform does not make a
difference for classical Monte Carlo, since for a standard normal vector X and an
orthogonal transform U we have E( f (X)) = E( f (UX)). On the other hand QMC
algorithms, originally developed for problems of moderate dimension, become
more efficient if the problem can be formulated in a way such that the integrand
depends mainly on only few of the input parameters while the others have little
influence. And frequently this can be facilitated by simply applying an orthogonal
transform.
So we may consider an orthogonal transform U to be effective for the integrand f ,
if only a couple of input parameters of f ◦U are important. A classical concept for
measuring the numbers of important parameters is that of “effective dimension”,
see [6], which relies on the ANOVA decomposition of f resp. f ◦U . Thus U could
be considered effective, if the effective dimension of f ◦U is much lower than that
of f .
A modern alternative to that concept is provided by weighted norms of reprodu-
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cing kernel Hilbert spaces, as introduced in [47]. Here the integration error of f
can be bounded by the norm of f through a Koksma-Hlawka type inequality, and
thus an orthogonal transform U can be considered to be effective for the integrand
f , if the weighted norm of f ◦U is much smaller than that of f .
At the present the project has two main goals: 1. to find and study suitable reprodu-
cing kernel Hilbert spaces of functions on the Rd in which integration is tractable
and 2. to find algorithms for the FEOT problem in those spaces. A practical pro-
blem occuring is that both effective dimension and weighted norms usually do not
depend continuously on the orthogonal transform. Thus we need to find, for exam-
ple, weighted reproducing kernel Hilbert spaces over the Rd which are invariant
under orthogonal transforms of the Rd . One additional constraint on these spaces
is that they should contain interesting functions while at the same time integration
should be defined and tractable (in the sense of Section 10).

10 Digital nets and lattice based integration rules

In this project, led by Friedrich Pillichshammer, we analyze QMC rules based
on lattice point sets in the sense of Hlawka and Korobov (see (2)) and on digital
nets and sequences in the sense of Niederreiter [35]. As the quality criterion we
study the worst-case integration error of QMC rules in various function spaces, a
concept which comprises the notions of classical and weighted discrepancy. We
aim at finding explicit constructions of “good” point sets and sequences and we
want to study the dependence of the worst-case error on the dimension of the
problem. The following two topics are exemplary:
Extending Roth’s general lower bound for the L2 discrepancy of finite point sets
from [43], Proinov [41] showed in 1986 that for any infinite sequence S in [0,1)s

the Lp discrepancy1 with p ∈ (1,∞) satisfies

Lp,N(S)≥ cs,p
(logN)s/2

N
for infinitely many N ∈ N. (3)

Recently, together with Dick [14], we found first explicit constructions of infini-
te digital sequences over the finite field F2 with L2 discrepancy of exactly this
order of magnitude, which shows that Proinov’s lower bound is best possible for
p∈ (1,2). For arbitary p> 2 this problem is still open, and it is one aim of this pro-
ject part to find explicit constructions of infinite sequences whose Lp discrepancy
matches the lower bound (3). (We remark that for finite point sets the problem has
already been solved by Chen and Skriganov [7] for p = 2 and by Skriganov [45]
for arbitrary p ∈ (1,∞).)

1The star-discrepancy D∗N given in (1) can be viewed as the L∞ norm of the local discrepancy
AN(B)/N−λ(B). In this sense, the Lp discrepancy is the Lp norm of the local discrepancy.
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Classical theories study the dependence of the integration error of QMC rules
on the number N of underlying integration nodes. Depending on the smoothness
of the integrands, described by a certain parameter α, one can typically achie-
ve an error convergence of the form O((logN)κs,α/Nα) for finite smoothness or
even O(e−csNBs

) for infinite smoothness. E.g., for functions on [0,1]s with fini-
te mixed partial derivatives up to order one, the worst-case integration error is
related to the star-discrepancy of the integration nodes which can be of order
O((logN)s−1/N). Such convergence rates are excellent in an asymptotic sense
when N grows to infinity. However, if we still consider the star-discrepancy, the
function N 7→ (logN)s−1/N is increasing for N ≤ es−1. But already for modera-
tely large dimensions s (e.g., in the hundreds) the value es−1 is too large to use
point sets of cardinality N > es−1 in practical applications. This means that we
need to analyze the error bounds of QMC rules also with respect to their depen-
dence on the dimension s. This is systematically done by studying the so-called
information complexity N(ε,s), which is the number of nodes required in order
to reduce a certain initial error in dimension s by a factor of ε, where ε ∈ (0,1).
Problems for which N(ε,s) grows exponentially in s or ε−1 are called intractable,
and this is exactly what we want to avoid. If, on the other hand, the information
complexity is bounded polynomially in s and ε−1, we speak of polynomial tracta-
bility. The subject of tractability for multivariate problems has been introduced by
Woźniakowski [52] in 1994. It is a further aim of this project part to study tracta-
bility properties for various function spaces and to present explicit constructions
of point sets which can achieve tractability. We think that lattice point sets and
digital nets and sequences are good candidates for this as well. Following a recent
stream of research, we also study the case of infinite smoothness.

11 Diophantine equations, discrepancy and finance

In the analysis of QMC methods, probabilistic methods can be used to investiga-
te the typical behavior of the distribution properties of sequences. An interesting
class of sequences, because of its importance in Fourier analysis and in probabi-
listic number theory, is the class of lacunary sequences (nkx)∞

k=1 for x ∈ R, where
(nk) is exponentially growing: nk+1/nk ≥ q> 1. Answering a question of P. Erdős,
Walter Philipp (1975) proved a “bounded” law of the iterated logarithm (LIL) for
the discrepancy2 of such sequences:

1
8
≤ limsup

√
N

2loglogN
DN (nkx)≤C(q) (4)

2The discrepancy DN of a sequence is defined in the same way as the star-discrepancy in (1)
with the only difference that the supremum is extended over all axes-parallel boxes of the form
B = ∏s

j=1[u j,v j) in [0,1)s.
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for almost all x (in the sense of Lebesgue measure on R) with a constant C(q) de-
pending on the growth rate q; see for instance [18]. Note that if (ξk) is a sequence
of i.i.d random variables on (0,1) then

limsup
N→∞

√
N

2loglogN
DN(ξk) =

1
2

(5)

with probability one by Chung-Smirnov LIL. It is one aim of this subproject, led
by Robert Tichy, to investigate the “probabilistic” behavior of deterministic se-
quences. This involves various tools, mainly from Fourier analysis, martingale
inequalities and methods from Diophantine analysis such as the theory of S-unit
equations. It was for instance shown in papers by C. Aistleitner, I. Berkes and
R. Tichy [1, 2] that a LIL with constant 1

2 as in (2) holds for lacunary sequences
(nkx) provided that nk+1/nk = ∞ (“strongly lacunary sequences”). Furthermore,
this result is permutation independent, i.e. it remains true for sequences (nσ(k)x),
where σ : N→ N is an arbitrary permutation of the positive integers. In the case
of “proper” lacunary sequences i.e. limsupk→∞

nk+1
nk

= q > 1 the situation is com-
pletely different: the constant in the LIL depends on the growth rate q and the
result is in general not permutation invariant. Within this project the investigation
will be extended to more general classes of sequences, in particular to the multidi-
mensional situation and to certain sublacunary sequences. In this context so-called
Hardy-Littlewood-Pólya sequences are well understood because of their arithme-
tic structure: in this case (nk) is given as the multiplicative semigroup generated by
finitely many coprime integers and arranged in increasing order. Such sequences
were used by H. Furstenberg in the theory of dynamical systems. Later W. Phil-
ipp (1994) proved a “bounded” LIL for this class of sublacunary sequences. By
Diophantine tools C. Aistleitner, I. Berkes and R.F. Tichy obtained a permutation
invariant LIL, and it remains open to extend such results to more general classes of
sublacunary sequences and to other kinds of distribution measures. It is also one
aim of this subproject to apply Diophantine and probabilistic tools to the analysis
of models in financial mathematics.

12 On the hierarchy of measures of pseudorandom-
ness

This project part deals with the analysis of pseudorandom numbers in view of
several different application areas. It is led by Arne Winterhof.
Pseudorandom numbers are generated by deterministic algorithms and are not ran-
dom at all. However, in contrast to truly random numbers, they guarantee certain
randomness properties. Their desirable features depend on the application area.
For example, uniformly distributed sequences of pseudorandom numbers are nee-
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ded for Monte Carlo methods, unpredictable sequences for cryptography, and un-
correlated sequences for wireless communication or radar. Some corresponding
quality measures are discrepancy for uniform distribution, linear complexity for
unpredictability, and autocorrelation.
The main goal of this project is finding relations between different measures of
pseudorandomness. For example, the linear complexity provides essentially the
same quality measure as certain lattice tests coming from the area of Monte Carlo
methods, see [15, 38]. Moreover, the paper [31] studies links between uniformly
distributed pseudorandom sequences (xn) of real numbers in [0,1) and the pseudo-
random binary sequences (en) defined by en = 0, if xn < 1/2 and en = 1 otherwise.
It is proved that good pseudorandom [0,1) sequences induce binary sequences that
have small correlation measures. The correlation measure of order k is a rather ge-
neral measure of pseudorandomness introduced by Mauduit and Sárközy [34]. A
relation between linear complexity and the correlation measure of order k is given
in [5]. Hence, we may very roughly say that discrepancy is a stronger measure
than the correlation measure which is a stronger measure than linear complexity.
There are many other related measures of pseudorandomness for sequences, see
[20, 42, 49], and we want to analyze their hierarchy. In this hierarchy we may
also include measures for cryptographic functions. For example, a small correla-
tion measure of order k of a binary sequence guarantees a high nonlinearity and
algebraic degree of a corresponding Boolean function [40], which is necessary to
avoid some cryptanalytic attacks.
Moreover, we try to find explicit sequence constructions which separate the hier-
archy classes and have excellent behaviour under the strongest measures. A focus
is put on uniformly distributed sequences derived from dynamical systems, see
the survey [50], hybrid sequences, sequences defined using characters of finite
fields, and interleaved sequences. We will also study relations to emergent areas
as coding theory, biology, or quantum computing.
Our main tools are from analytic number theory, in particular, exponential sum or
character sum techniques. For recent surveys on character sums and their applica-
tions see [39, 51]. However, we also use very new techniques for example from
additive combinatorics.
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[31] C. Mauduit, H. Niederreiter, and A. Sárközy. On pseudorandom [0,1) and binary
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On May 19 2014, Professor Yakov Sinaı̆ (Moscow State University) was awarded
the Abel Prize for his contributions to mathematical physics. We sketch some of
his main achievements.

Receiving the Abel prize for Professor Yakov Sinaı̆ and his wife Elena Vul (also a
mathematician) entailed a varied program of journeys (Oslo, Stavanger and Stock-
holm), lectures, receptions and interviews (with the Press and Martin Raussen &
Christian Skau; the latter traditionally appears in the Notices of the AMS). The
highlight was of course the award ceremony itself, at the hands of Crown Prince
Haakon of Norway, on May 20 2014.
Yakov Grigorevich Sinaı̆ was born in 1935 in a family of scientists. His parents
were both microbiologists in Moscow and his grandfather a prominent mathemati-
cian, head of department of the differential geometry at Moscow State University.
Sinaı̆ obtained his first degree in 1957, which was also the year of his first pub-
lication. His master (equivalent to PhD) degree followed in 1960. The academic
landscape in Moscow, within the rapidly developing fields of Ergodic Theory and
Statistical Mechanics was truly remarkable: Chataev, Dynkyn and Kolmogorov
were his advisors, and the faculty included Anosov, Krylov, Dobrushin, Gel’fand
and others. The fact that he came from a Jewish family, however, restricted his
possibilities in the Russian system, and he was unable to get a full position at
the Mathematics Department. Instead, he accepted a position at the Landau In-
stitute of Theoretical Physics of the USSR Academy of Sciences. This enabled
him to collaborate with physicists as well as mathematicians, and to bridge the
two disciplines, as he would continue to do in an unparalleled way. He introduced
fundamental concepts of statistical physics into mathematics (Kolmogorov-Sinaı̆
entropy, thermodynamic formalism, renormalization groups) giving them a rigor-
ous basis.
Sinaı̆ was a crucial figure in spread of ergodic theory. At the time, it was common
for talented mathematicians in Eastern Europe to study in Moscow, and this is how
Fritz, Krámli and Szász from Budapest and Krzyzewski and Szlenk from Warsaw
first came in contact with the emerging field, and in due time founded schools in
their home countries.
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Sinaı̆’s work was well-known in the West early on, and in 1962 he was invited to
give a plenary lecture at the ICM in Stockholm. Russian mathematicians being
allowed to travel to the West were more the exception than the rule. For example,
the support of the dissident poet-mathematician Esenin resulted in Sinaı̆ being
barred from giving an address at the ICM in Nice in 1970. He was not alone
in this; for example, Novikov was unable to come to Nice and accept the Fields
medal in person.
In 1992, Sinaı̆ joined the faculty of Princeton University, dividing his time be-
tween Moscow and Princeton from that time onwards, in addition to several guest
professorships (such as Caltech in 2005). The Abel Prize is currently the last of
a long list of awards: the Boltzmann Gold Medal (1986); the Heineman Prize
(1989); the Markov Prize (1990); the Dirac Medal (1992); the Wolf Prize in
Mathematics (1997); the Brazilian Award of Merits in Sciences (2000); the Moser
Prize (2001); the Nemmers Prize in Mathematics (2002); the Henri Poincaré Prize
(2009); the Dobrushin International Prize (2009).
Sinaı̆’s major work lies in Statistical Mechanics. The aim of this area is to derive
the statistical “macroscopic” behaviour of material (which can be gases, liquids,
but also fixed atoms or moving electrons in a grid) from the behaviour of the
individual particles it consists of. This goes back to James Clerk Maxwell (1831–
1879) and Ludwig Boltzmann (1844–1906), who applied the notions of ergodic-
ity and entropy, although the modern form of these notions (partly due to Sinaı̆)
is quite different from Boltzmann’s original approach. The Laws of Thermody-
namics predict that a system of particles strives to minimal energy and maximal
entropy (= disorder), and the work of Josiah Willard Gibbs (1839–1903) united
this by the introduction of equilibrium states. These are measures assigning proba-
bilities to configurations of the system, where the weights are inverse proportional
to the exponential of the potential energy of the configuration. The fact that par-
ticular energy levels are achieved by vastly more configurations than other energy
levels, creates an equilibrium between energy and entropy. In principle, the sys-
tem can move away from the equilibrium, but if the number of particles is large1,
this becomes astronomically unlikely.
In his derivation of the H-Theorem (now called second law of thermodynamics)
Boltzmann needed the so-called Ergodic Hypothesis:

The trajectory of the point representing the state of the system in
phase space passes through every point on the constant-energy hy-
persurface of the phase space.

This was criticised, not just as mathematically unfeasible, but also it was unknown
if any system satisfied this hypothesis, even in a weakened form proposed in the

1Which is of course the case in practical situations; in fact the sheer number of particles makes
the system completely intractable by deterministic methods.
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influential survey paper by Tatiana and Paul Ehrenfest [7]. A rigorous proof for
even the simplest systems of a few colliding particles (mathematical billiards) was
beyond the state of mathematics at the time, and rigorous definitions of ergodicity
(and entropy) had yet to be formulated.
In the 1930s, progress was made in the study of geodesic flow on surfaces of
negative curvature. These are non-Euclidean “hyperbolic” surfaces on which ini-
tially close trajectories diverge at an exponential rate. This can be considered as
a continuous version of dispersion as opposed to the dispersion at discrete time
collisions of the particles in the billiard system. The first proofs of ergodicity
(Hadamard [8], Artin [1]) for certain hyperbolic geodesic flows relied on number
theoretic properties (continued fractions, the Gauß map), but in 1939, Eberhard
Hopf (1902–1983) designed a general method of proving ergodicity for hyper-
bolic flows Φt . This became known as Hopf Chains, and relies on the fact that
ergodic averages limT→∞

1
T
∫ T

0 ψ◦Φtdt are constant on stable and unstable sets of
points in configuration space. However, this method required smoothness, with
stable and unstable sets stretching sufficiently far so as to create net spanning the
entire configuration space. This condition is fulfilled for many geodesic flows, but
not for systems of colliding particles.
After about 20 years of no progress, the Russian school started to get involved.
Using methods from measure theory, Andrej Kolmogorov (1903–1987) and Sinaı̆
were able to formalize entropy in a effective way [12, 18]. A measure µ on the
a (configuration) space (X ,B) is called flow-invariant, if µ(A) = µ(ΦtA) for all
sets A⊂ B and time t ∈ R. Energy preserving (Hamiltonian) flows have a natural
invariant measure, called Liouville measure, but there are many others.
Given a measure µ and a partition Q of the configuration space, the entropy of
this partition is given by the sum

H(Q ,µ) =− ∑
Q∈Q

µ(Q) logµ(Q),

and it takes its maximal value log#Q when µ distributes the mass evenly over all
partition elements Q ∈Q . This reflects that the entropy becomes largest when the
probability of finding yourself in a particular state is spread the most. Assuming
a discrete-time flow Φn for simplicity, let Q n = ∨n−1

k=0Φ−kQ be the n-th joint of
the partition; elements in Q n are those sets of x that visit the same elements of Q
in time steps k = 0, . . . ,n−1. The Kolmogorov-Sinaı̆ entropy is now computed as
the growth rate of H(Qn,µ), and then maximized over all finite partitions Q . That
is:

hµ(Φn) = sup
Q

lim
n→∞

1
n

H(Q n,µ).

Kolmogorov-Sinaı̆ entropy became a widespread tool, also beyond statistical me-
chanics. There are parallels to Information Theory developed by Shannon [16] in
the 1940s; I would also like to mention Ornstein’s remarkable theorem [13] that
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in the context of two-sided Bernoulli shifts, entropy is a complete isomorphism
invariant: two Bernoulli shifts are isomorphic if and only if they have the same
entropy.
In the early 1970s, Sinaı̆, combined entropy with the potential energy U of Gibbs’
approach to what is known as thermodynamic pressure:2

P(βU) = sup{hµ(Φt)−β
∫

Udµ}.

Here the supremum is taken over all flow-invariant measures µ and the param-
eter β = 1/kT for Boltzmann’s constant k and absolute temperature T . Those
flow-invariant measures µ that achieve this supremum play the role of equilib-
rium states in Gibbs’ approach, in the sense that they realize equilibrium between
the (maximal) entropy and (minimal) potential energy. Under some regularity
conditions, equilibrium states satisfy the Gibbs property which means that the
mass of sets Q ∈ Q n scales as the exponential of the ergodic sum of U −P, i.e.,
µ(Q) ∼ exp(∑n−1

k=0 U ◦Φk−P(βU)). As function of the inverse temperature pa-
rameter β, equilibrium states can vary continuously, or abruptly. The latter case is
referred to as phase transition, in analogy between abrupt chance of equilibrium
describing e.g. water in liquid versus frozen form, or a piece of iron in magne-
tised versus demagnetised form (cf. the Ising model). With this, Sinaı̆ [21] laid
the foundation for thermodynamic formalism in dynamics. Further contributions
come from Rufus Bowen [2] and David Ruelle3 [14]. A modern text book in
ergodic theory with emphasis on this material was written by G. Keller [11].
Coming back to the billiard systems and the Hopf argument, which, as we men-
tioned, breaks down for billiard systems. Colliding participles can create singu-
larities in the flow, when they collide tangentially (grazing collisions) or in three
or more at exactly the same time. Such singularities create discontinuities in con-
figuration space and prevent the proper construction of stable and unstable sets,
making it impossible to carry out Hopf’s argument. It was Sinaı̆ who forced the
breakthrough by showing that in sense of Liouville measure, stable and unsta-
ble sets can be defined and are sufficiently long at “most” points of configuration
space.
The basic setup of a billiard flow is a particle (or several particles) moving with
constant speed in some region Q (the billiard table) and reflecting elastically
against the boundary ∂Q, so that no kinetic energy is lost in collisions, and the
angle of incidence is the angle of reflection, see Figure 1. In formula, the velocity
v′ after collision is identified with the velocity before collision via

v′ = v−2〈v,n(q)〉n(q), q ∈ ∂Q, (6)

2The connections with pressure from Newtonian physics is all but lost here.
3See [15] and [24] for some mutual 65th birthday wishes between the two.
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n(q)

v

v′

Figure 1: Collision rule (left) and the billiard flow with one spherical scatterer on
the two-torus (right).

where n(q) is the inward pointing normal vector at the collision point q of the
boundary of the table, see [25]. The phase space M is the unit tangent bundle
of Q, with identifications at the boundary according to (6). The billiard flow Φt
preserves Liouville measure dqdωq, where ωq is uniform measure on the sphere
of unit tangent vectors at q ∈ Q. Rather than the flow Φt , we can look at the col-
lision map F : ∂Q× S→ ∂Q× S, where S is the “half-sphere” obtained from the
unit sphere by the identification (6). The map F preserves a measure sinθdθdr,
for r ∈ ∂Q and angle θ ∈ S with the normal vector n(q). For this, ∂Q has to be
piecewise smooth; corners of the billiard table, but also grazing collisions with
the boundary, give rise to singularities. Usually, the particles are treated as hard
spherical objects: the collision of two particles becomes just part of the regular
boundary of the billiard table, but simultaneous collisions of three or more parti-
cles become “corners” of the billiard.
The first model that Sinaı̆ managed to solve this way is a two-particle system on a
two-dimensional torus, or equivalently a single particle colliding with a spherical
scatterer in the two-dimensional torus, see Figure 1. The general version of this
result is known as the Boltzmann-Sinaı̆ postulate [19]:

The system of N spherical particles with elastic collisions on the d-
dimensional torus is ergodic.

In trying to extend this result to more particles and higher dimensions, addition
technicalities come into play: finite versus infinite horizons, semi-dispersing ver-
sus fully dispersing billiard, cusps and other intricacies of the geometry. To-
gether with Leonid Bunimovich [4] and later Nikolai Chernov, new techniques
were introduced, [5, 4]. Gradually the Hungarian school (Szász, Krámli, Simányi,
Bálint, . . . ) got more involved, also with the help of another Sinaı̆ student Dolgo-
pyat. This finally led to the full proof of the Sinaı̆-Boltzmann postulate by Nándor
Simányi in 2013 [17]. Current directions in this field try to address the question of
(rates of) mixing and further statistical properties of billiard flows. Without doubt,
Sinaı̆’s work, insights and encouragement over the span of sixty years have carved
the landscape of billiard flows like nothing else.
In have restricted my discussion to areas that I am familiar with, leaving out
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Sinaı̆’s further work on renormalization groups [23], Schrödinger operators [6],
fluid mechanics, Navier-Stokes equations (with K. Khanin, J. Mattingly and D.
Li), in fact countless topics in mathematical physics, but also number theory and
stochastics (e.g. random walks in random environment [22]. His further contri-
butions to dynamical systems include work on Markov partitions for hyperbolic
systems (billiards [5, 3]), SRB-measures for (non-uniformly hyperbolic) systems,
and there is his expository work of numerous text books, survey articles, and
lecture series. Let me finally mention his prominent role in the mathematics com-
munity as a whole, and the impressive list of students that he supervised over the
years. These include the already mentioned Bunimovich, Chernov, Mattingly and
Dolgopyat, but also Bufetov, Gurevich, Jitomirskaya, Katok, Kornfeld, Margulis,
Ratner and Ulcigrai.
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selblatt and Nándor Simányi. Also the hospitality of the Max Planck Institute for
Mathematics in Bonn is gratefully acknowledged.

References

[1] E. Artin, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Uni-
versität, vol. 3 (1924), 170–175.

[2] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,
Lect. Math. 470 Spring 1974 and second revised edition 2008.

[3] L. A. Bunimovich, Ya. G. Sinaı̆, Markov partitions for dispersed billiards, Comm.
Math. Phys. 78 (1980/81), no. 2, 247–280.

[4] L. A. Bunimovich, Ya. G. Sinaı̆, Statistical properties of Lorentz gas with periodic
configuration of scatterers, Comm. Math. Phys. 78 (1980/81), no. 4, 479–497.

[5] L. A. Bunimovich, Ya. G. Sinaı̆, N. Chernov, Markov partitions for two-dimensional
hyperbolic billiards, (Russian) Uspekhi Mat. Nauk 45 (1990), no. 3(273), 97–134,
221; translation in Russian Math. Surveys 45 (1990), no. 3, 105–152

[6] E. I. Dinaburg, Ya. G. Sinaı̆, The one-dimensional Schrödinger equation with a
quasiperiodic potential, Funkts. Anal. Prilozh., 9:4 (1975), 8–21

[7] P. Ehrenfest, T. Ehrenfest, Begriffliche Grundlagen der statistischen Auffassung
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1 Introduction

Computed tomography (CT) is one of the most important diagnostic tools in
modern medicine. While the term computed tomography was initially reserved
for x-ray based CT scanners, it nowadays covers various non-invasive imaging
technologies, where mathematics plays a major role for obtaining diagnostic im-
ages. Examples include x-ray CT, single photon emission computed tomography
(SPECT), positron emission tomography (PET), magnetic resonance tomography
(MRT), ultrasound tomography, electrical impedance tomography, optical imag-
ing, as well as photoacoustic tomography and the closely related thermoacoustic
tomography.
The unifying element of all tomographic applications is that only indirect infor-
mation about the quantity of interest (usually modelled as a function defined on
R2 or R3) can be collected when scanning the patient. Due to the modeling imper-
fections, measurement errors and statistical uncertainties, the data are additionally
corrupted by deterministic or random noise. Such type of applications are most
conveniently be studied in the framework of inverse problems, where the recon-
struction problem is formulated as an operator equation

Y = K f + ε.

Here K is a linear or nonlinear operator modeling the particular inverse problem,
f is the unknown (infinite dimensional) parameter, ε is the noise, and Y are the
given noisy data. In many medical imaging technologies the operator K can be
modelled as a Radon transform, which maps a function to its integrals over curves
or other manifolds. For example, the data in the classical x-ray CT as well as in
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single photon emission tomography provide approximate integrals of the unknown
parameter over straight lines. In the more recent photoacoustic tomography, the
underlying transform is the spherical Radon transform, which integrates the un-
known function over spherical surfaces.
In this note, we highlight two prime examples of computed tomography, namely
classical x-ray based CT and the more recent photoacoustic tomography. For both
applications we present the underlying modeling equations. We further discuss
basic mathematical results that form the foundation of the filtered backprojection
algorithm, which is still the most widely used reconstruction algorithm in medical
CT scanners.

2 The classical Radon transform

X-ray CT is the oldest non-invasive medical imaging methodology, where math-
ematical reconstruction algorithms play a major role for creating slice images of
some patient. Like medical radiography, it is based on the physical properties
that x-rays mainly propagate along straight lines in tissue and that the spatially
varying x-ray attenuation depends on the structure in the interior of the patient.
However, in radiology only projection images (averages of the attenuation func-
tion over lines) are captured and displayed, whereas x-ray CT uses mathematical
reconstruction algorithms combining several projection images to provide section
images of the interior of the patient as final output.
The Radon transform, which maps a function defined in the Euclidian plane to its
integrals over straight lines, forms the mathematical basis of x-ray CT. Image re-
construction in x-ray CT therefore requires a precise understanding of the Radon
transform and in particular requires methods for its analytical or numerical inver-
sion. In 1963, Cormack [9] was the first to point out the possible application of
the Radon transform for medical applications. The first commercially available
CT system was constructed by Hounsfield [37], and the first patient brain-scan in
a hospital was made in 1972. In 1979, Cormack and Hounsfield shared the Nobel
Prize for Medicine and Physiology for the development of computed tomogra-
phy. Later Cormack realized that the transform he studied was already analyzed
in 1917 by Johann Radon (see [61]), an Austrian mathematician interested in the
problem of recovering a function from its line integrals from a purely mathemati-
cal perspective. A long time before the invention of computed tomography Radon
already derived an inversion formula for the transform that was later named after
him. Radon itself was inspired by work of another Austrian mathematician, Paul
Funk, who studied a similar problem, namely that of recovering a function on the
two-dimensional sphere from its integrals over all great circles [21].
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x0

x1

Ω

a

Figure 1: An x-ray is emitted at some point x0 outside of Ω, propagates along the
line L through Ω, and is finally recorded at another location x1 outside of Ω.

2.1 Mathematical modeling of x-ray CT

For the following, let Ω⊂R2 be some convex domain in the Euclidian plane mod-
eling a slice of some human patient. We denote by f : R2→ R the spatially vary-
ing x-ray absorption coefficient which is assumed to be supported in Ω. Suppose
further, that an x-ray beam origins at some position x0 outside of Ω, propagates
along a straight line L and is finally recorded at another point x1 outside of Ω; see
Figure 1. We parameterize the line L by γ : R→ R2 : t 7→ x0 + ta, where a ∈ R2

is a unit vector pointing from x0 to x1 and denote by I(t) the intensity of the x-ray
beam at location γ(t). The intensity at the source position x0 will be denoted by I0
and the intensity at the receiver position x1 by I1.
According to Beer’s law, the loss of intensity in a small interval [t, t +∆t] is ap-
proximately proportional to the intensity I(t), the attenuation coefficient f (γ(t)),
and the length ∆t of the interval. Hence we have I(t+∆t)− I(t)≈− f

(
γ(t)
)
I(t)∆t

and taking the limit ∆t→ 0 yields the initial value problem
dI
dt

(t) =− f
(
γ(t)
)
I(t) for t ∈ R

I(0) = I0.

Integrating this equation gives I(t) = I0 exp
(
−
∫ t

0 f
(
γ(t)
)
dt
)
. Evaluating this ex-

pression at the special value t1 = |x1− x0| (corresponding to the detector location)
and using I1 = I(t1) yields∫

L
f (x)ds(x) :=

∫ t1

0
f (γ(t))dt = log

(
I0

I1

)
. (7)

From (7) we conclude, that every pair of intensity I0 emitted by some x-ray source
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at x0 and intensity I1 measured by an x-ray detector at x1 provides the integral of
f over the straight line through the points x0 and x1.

source

so
ur

ce

detector de
tec

tor

source

detector ring

Figure 2: LEFT: In a first generation CT scanner a single source and detector pair
is translated linearly. Subsequently the source and detector are rotated, and the
measurement process is repeated for different orientations. RIGHT: In modern
fourth generation CT scanner a single source sends out a fan-shaped bunch of x-
rays that are recorded with a detector ring surrounding the patient. Subsequently
the source is rotated and the measurement process is repeated with different source
locations.

By varying the positions of the x-ray sources and detectors, respectively, one col-
lects several integrals of f over different lines. The mathematical task of CT is
to recover the function f from these line integrals. The first CT scanner operated
in parallel beam mode. As illustrated in the left picture in Figure 2, the source
and detector translate linearly, where at any instance a single line integral is col-
lected. Subsequently, the whole apparatus is rotated by a certain angle, and the
measurements are repeated until the whole angular range is covered. Such type of
scanners are now known as first generation x-ray scanners. Modern fourth gener-
ation x-ray scanners operate in fan beam shape where a whole bunch of x-rays is
emitted from a single source which rotates around the object of interest (see the
right picture in Figure 2).

2.2 The Radon transform

The Radon transform, which integrates a function f : R2→R over all lines, forms
the mathematical basis of x-ray tomography. Let us write any line in the plane in
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the form L = {sθ+ tθ⊥ : t ∈ R}, where θ ∈ S1 is a normal vector, s ∈ R is the
oriented distance of the line from the origin, and θ⊥ ∈ S1 denotes a unit vector
orthogonal to θ.

Definition 1 (Radon transform). The Radon transform R f : S1×R→ R of an
integrable function f : R2→ R is defined by

(R f )(θ,s) :=
∫
R

f (sθ+ tθ⊥)dt.

For fixed θ ∈ S1 we call the univariate function (R f )(θ, ·) : R→ R the linear
projection of f orthogonal to θ.

By Fubini’s theorem (R f )(θ,s) is well defined for almost any (θ,s)∈ S1×R. We
sometimes suppose that f is supported in the open unit disc D= {x∈R2 : |x|< 1}.
One easily shows, that R then defines a linear bounded operator R : L2(D)→
L2(S1× (−1,1)), see [48].

Two main theorems

The most basic and probably most important result for the Radon transform is the
Fourier slice theorem, that relates the Radon transform to the Fourier transform.
For that purpose we denote by

(F f )(ξ) :=
∫
Rd

f (x)e−i〈ξ,x〉dx for ξ ∈ Rd,

the d-dimensional Fourier transform and by (F2g)(θ,σ) := (F g(θ, ·))(σ) the
Fourier transform of a function g : S1×R→ R in the second argument.

Theorem 2 (Fourier slice theorem). For any integrable function f : R2→ R we
have

(F f )(σθ) = (F2R f )(θ,σ) for (θ,σ) ∈ S1×R. (8)

Proof. This is a simple application of Fubini’s theorem. In fact, by Fubini’s theo-
rem and the orthonormality of θ and θ⊥, we have

(F2R f )(θ,σ) =
∫
R

e−iσs
∫
R

f (sθ+ tθ⊥)dtds

=
∫
R

∫
R

e−i〈σθ,sθ+tθ⊥〉 f (sθ+ tθ⊥)dtds = (F f )(σθ),

where the last equality follows by the change of variables x = sθ+ tθ⊥.
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The argument σθ appearing on the left hand side of (8) fills in the whole Fourier
plane, which is required to invert the Fourier transform using the well known, ex-
plicit and stable Fourier inversion formula f (x) = 1

4π2

∫
R2(F f )(ξ)ei〈ξ,x〉dξ. Hence

the function f can be reconstructed by means of a one-dimensional Fourier trans-
form, followed by an interpolation based on (8), and finally performing an in-
verse two-dimensional Fourier transform. Note however, that interpolation in the
Fourier domain is a critical issue, and such Fourier domain algorithms have not
been very successful in early stages of CT. More recently, such type of algorithms
have been improved significantly using ideas from nonuniform fast Fourier trans-
forms [5, 12, 16, 20, 24, 25, 59] or by gridding techniques originally developed
for magnetic resonance tomography [53, 67].
While reconstruction algorithms based on the Fourier slice theorem exist, much
more common are algorithms of the filtered back-projection type. Such algorithms
are based on explicit inversion formulas we shall consider next. For that purpose
we denote by

(H2g)(θ,s) :=
1
π

∫
R

g(θ, t)
s− t

for (θ,s) ∈ S1×R, (9)

the Hilbert transform of a function g : S1×R→ R applied in the second argu-
ment. Here the integral is understood in the Cauchy principal value sense. The
Hilbert transform is the convolution with the distribution P.V.[1/s] and has the
well known Fourier representation (F2H2g)(θ,σ) =−isign(σ)(F2g)(θ,σ). Like-
wise we denote by ∂2g the derivative of g in the second argument.

Theorem 3 (Filtered back-projection type inversion formula). For any continu-
ously differentiable function f : R2→ R with support in D, we have

f (x) =
1

4π

∫
S1
(H2∂2R f )(θ,〈θ,x〉) dθ

=
1

4π2

∫
S1

(∫
R

(∂2R f )(θ, t)
〈θ,x〉− t

dt
)

dθ for x ∈ R2. (10)

There are several different ways to derive the important inversion formula (10);
see for example [35, 42, 48]. Below we shall give a simple proof based on the
Fourier slice theorem.

Proof of Theorem 3. By the two-dimensional Fourier inversion formula, the use
of polar coordinates ξ = σθ, and the Fourier slice theorem we have

f (x) =
1

4π2

∫
R2
(F f )(ξ)ei〈ξ,x〉dx

=
1

4π2

∫
S1

∫ ∞

0
σ(F2R f )(θ,σ)eiσ〈θ,x〉dσdθ
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=
1

8π2

∫
S1

∫
R
|σ|(F2R f )(θ,σ)eiσ〈θ,x〉dσdθ.

The Fourier representations of the Hilbert transform and the derivative in the sec-
ond argument show |σ|(F2R f )(θ,σ) = (F2H2∂2R f )(θ,σ). Hence, application
of the one-dimensional Fourier inversion formula yields

f (x) =
1

8π2

∫
S1

∫
R
(F2H2∂2R f )(θ,σ)eσ〈θ,x〉dσdθ

=
1

4π

∫
S1
(H2∂2R f )(θ,〈θ,x〉)dθ,

which is the first claimed inversion formula. The second inversion follows after
inserting the definition of the Hilbert transform in the former.

There exist several other explicit inversion formulas for the Radon transform (see
for example [35, 42, 48]), which are more or less equivalent to the one of The-
orem 3. The first such formula has been derived by Johann Radon in 1917 a
long time before the development of computed tomography (see [61]; the orig-
inal paper is reprinted in the book [35, pp. 177–192]). Note that Cormack and
Hounsfield, the inventors of CT, had originally been unaware of the work of Radon
and therefore independently (of Radon and each other) derived appropriate inver-
sion techniques.

Dual convolution

While the filtered backprojection algorithm can be seen as a numerical imple-
mentation of (12), it is more naturally developed using a convolution identity
for the dual Radon transform we shall study next. For that purpose, we de-
note by ( f1 ∗ f2)(x) :=

∫
Rd f1(x− y) f2(y)dy the convolution of two functions

f1, f2 : Rd → R. When applied to functions defined on S1×R, we make the con-
vention that it only acts in the second component. Further, we define dual Radon
transform (

R ]g
)
(x) =

∫
S1

g(θ,〈θ,x〉)dθ,

of some integrable function g : S1×R→R. One easily shows that one has in fact
the following dual property∫

S1

∫
R
(R f )(θ,s)g(θ,s)dsdθ =

∫
R2

f (x)
(

R ]g
)
(x)dx.

Further, the following important properties hold, which serves as the basis of the
filtered backprojection algorithm we derive in the next section.
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Theorem 4 (Dual convolution). Let f : R2→R be integrable and let g : S1×R→
R be C1 with sufficient decay at infinity. Then

(a)
(
R ]g

)
∗ f = R ] (g∗R f )

(b) For all ξ ∈ R2, we have
(
F R ]g

)
(ξ) = 2 |ξ|−1 F2g(ξ/ |ξ| , |ξ|).

(Note that the function R ]g is in general not integrable and therefore F R ]g
has to be defined in sense of distributions.)

Proof. (a) The definition of the dual transform and Fubini’s theorem show(
R ]g

)
∗ f (x) =

∫
R2

∫
S1

g(〈θ,x− y〉)dθ f (y)dy

=
∫

S1

∫
R

∫
R

g(〈θ,x〉− s) f (sθ+ tθ⊥)dtdsdθ

=
∫

S1

∫
R

g(〈θ,x〉− s)R f (θ,s)dsdθ

= R ] (g∗R f )(x).

(b) Suppose that ϕ ∈ S
(
R2) is any Schwartz function. According to the distribu-

tional definition of the Fourier transform and the Fourier slice theorem,∫
R2

(
R ]g

)
(x)(F ϕ)(x)dx =

∫
S1

∫
R

g(θ,σ)(R F ϕ)(θ,σ)dσdθ

=
∫

S1

∫
R
(F g)(θ,σ)

(
F −1R F ϕ

)
(θ,σ)dσdθ

= 2
∫

S1

∫
0
(F g)(θ,σ)ϕ(σθ)dσdθ

= 2
∫
R2

(F g)(ξ/ |ξ| , |ξ|)
|ξ|

ϕ(ξ)dξ.

This shows that F R ]g is a regular distribution and represented by the function
ξ 7→ 2 (F g)(ξ/|ξ|,|ξ|)

|ξ| .

Generalization to higher dimensions

The Radon transform can easily be generalized to higher dimensions, where it
maps a function f : Rn → R to its integrals (R f )(θ,s) =

∫
H(θ,s) f (x)dS(x) over

hyperplanes H(θ,s) = {x ∈ Rn : 〈θ,x〉= s}, where θ is a normal vector of the
hyperplane H(θ,s), s its oriented distance from the origin and dS denotes the
n− 1 dimensional surface measure. Most results for the two dimensional case
generalize to higher dimensions as well (see, for example [35, 48, 50]).
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For example, in three spatial dimensions, the analogon of the filtered back-projec-
tion inversion formula (12) reads

f (x) =− 1
8π2

∫
S2
(R f )′′(θ,〈θ,x〉)dθ for x ∈ R3, (11)

where (R f )′′ denotes the second derivative of R f with respect to the second
variable. One notices that the inversion formula for the Radon transform in three
dimensions looks simpler than its analogon in two dimensions. Moreover, the
inversion formula in three dimensions is local in the sense that recovering f at a
single point x ∈ R3 using (11) only requires values of the Radon transform corre-
sponding to planes which pass through an arbitrarily small neighbourhood of the
reconstruction point x. Opposed to that, the 2D inversion formula (10) is non-lo-
cal: Recovering f at a single point requires knowledge of the integrals of f over
all lines in the plane. Note that such a discrepancy also holds in higher dimension:
Inversion of the Radon transform is local in every odd dimension and non-local in
every even dimension.

2.3 The filtered back-projection algorithm

The filtered backprojection (FBP) algorithm is still the most commonly used re-
construction algorithm for medical x-ray CT, see [58]. It may be seen as a com-
puter implementation of the filtered backprojection inversion formula (10). How-
ever, due to the presence of the derivative, the inversion formula is sensitive to
error in the data R f . Such an instability is inherent in the Radon transform and
one can show that inversion of the Radon transform is ill-posed of degree 1/2 (see
[48, Chap. II, Thm. 5.1]). For solving such an ill-posed problem one has to apply
regularization techniques, which replace the exact solution by an approximate but
stable one.
It is therefore reasonable derive the FBP algorithm from the already regularized
formula (see Theorem 4)

(Wb ∗ f )(x) =
(

R ] (wb ∗R f )
)
(x)

=
∫

S1

∫
R

wb(θ,s)(R f )(θ,〈θ,x〉− s)dsdθ, (12)

where 1/b> 0 is a regularization parameter and Wb : R2→R and wb : S1×R→R
satisfy the dual equation Wb = R ]wb. In (12) the regularization effect comes from
the convolution of the unknown f with a smooth radially symmetric mollifier
Wb : R2→R. If the family {Wb}b>0 is such that Wb ∗ f → f as b→∞, then Wb ∗ f
is a smooth approximation of the unknown f that can be computed in stable way
from the Radon data R f .
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The approximate inversion formula (12) is again of the filtered backprojection
type. The inner operation is the convolution in the variable s with a smooth ker-
nel and is referred to as the filtering step. The outer operation is refereed to as
backprojection and integrates wb ∗R f over all lines that pass through the recon-
struction point x. The function wb is the filtering kernel and requires solving the
dual equation Wb = R ]wb. A variety of filtering kernels can be designed using the
following corollary of Theorem 4.

Corollary 5. Suppose Φ : [0,∞)→R is an integrable function satisfying 0≤Φ≤
1 and Φ(σ) = 0 for σ≥ 1. Further, let Wb denote the inverse Fourier transform of

Ŵb : R2→ R : ξ 7→Φ
(
|ξ|
b

)
. (13)

Then (12) holds with

F2wb (θ,σ) =
|σ|
2

Φ
(
|σ|
b

)
. (14)

Proof. Defining Wb, wb by their Fourier representations (13), (14), Item (b) in
Theorem 4 shows Wb = R ]wb and therefore (12) follows from Theorem 4 (a).

The standard FBP algorithm is a straightforward numerical implementation of
(12). For that purpose, suppose that only discrete data

g j,k := (R f )(θ j,k∆s) , for ( j,k) ∈ {1, . . . ,N}×{−M, . . . ,M} ,

are given, where θ j := (cosϕ j,sinϕ j) with ϕ j = 2( j− 1)π/N and ∆s := 1/M.
The FBP algorithm uses the composite trapezoidal rule for discretizing the inner
integral in (12) at the sampling points which yields

∆s
M

∑
`=−M

wb(k∆s− `∆s)g j,` '
∫
R

wb(s− t)R f (θ j,s)ds. (15)

Notice that wb is independent of θ ∈ S1, and we have dropped this first argument.
The outer integration (backprojection operation) is also discretized with the com-
posite trapezoidal rule evaluated at certain grid points x ∈ D. The required values
of (wb ∗R f )(θ j, ·) evaluated at 〈θ j,x〉 are computed with (15) and subsequent
linear interpolation in the second argument.
The most critical step in the FBP algorithm is the discrete convolution in (15),
defined by the discrete reconstruction filter

(wb(k∆s))k=−M,...,M ,

whose entries are samples of the filtering kernel wb at the sampling points k∆s.
Based on Corollary 5, one can derive most reconstruction filters used in CT. For

38



example, the strict low pass filter defined by Φ(σ) = 1 for σ ∈ [0,1] and Φ(σ) = 0
otherwise, yields the filter coefficients

wb(k∆s) =
b2

2π2


1/4 for k = 0
−1/(π2k2) for k odd
0 otherwise.

This filter has been proposed in 1971 by Ramachandran and Lakshminarayanan
[62] and is referred to as Ram-Lak filter. The choice Φ(σ) = sin(σπ/2)/(σπ/2)
for σ ∈ [0,1] and Φ(σ) = 0 otherwise has been proposed in 1974 by Shepp and
Logan. The resulting Shepp-Logan filter coefficients are given by

wb(k∆s) =
b2

π4
1

1−4k2 .

For more details on the FBP algorithm and filter design, see [10, 42, 48].

3 The spherical Radon transform

The classical Radon transform maps a function to its integrals over straight lines.
As we have seen in the previous section, it serves as the basis of x-ray CT. In a
number of different imaging technologies, there arises a need to reconstruct an
unknown function from its integrals over spheres. This leads to the inversion of
the so-called spherical Radon transform, which we study in this section.
For an integrable function f : Rn→R, the spherical Radon transform Rsph f : Rn×
(0,∞)→ R is defined by

(Rsph f )(x, t) :=
∫

∂B(x,t)
f (y)ds(y) for (x, t) ∈ Rn× (0,∞).

Here B(x, t) := {y∈Rn : |x− y|< t} is the open n-dimensional ball of radius t > 0
centered at x with respect to the usual Euclidean norm, ∂B(x, t) is its boundary, and
ds denotes the standard surface measure. For n= 2, one also calls Rsph the circular
Radon transform.
The spherical Radon transform arises, for example, in photoacoustic tomography
(PAT) [7, 19, 44, 74], sound navigation and ranging (SONAR) [4, 60], synthetic
aperture radar (SAR) [1, 63], ultrasound tomography [51, 52], and seismic imag-
ing [6, 15]. In the following subsection, we show how the 2D and 3D spherical
Radon transforms arise in the quite recently developed PAT.
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Figure 3: Illustration of PAT. Electromagnetic pulses are delivered into the tissue.
Ultrasound detectors measure the generated acoustic waves on the boundary.

3.1 Photoacoustic tomography

PAT is based on the so-called photoacoustic effect. When short pulses of non-
ionising electromagnetic energy are delivered into a biological (semi-transparent)
tissue, then parts of the electromagnetic energy become absorbed. The absorbed
energy leads to a nonuniform thermoelastic expansion (depending on the tissue
structure), which in turn generates an ultrasonic wave. These waves are detected
by a measurement device on the boundary of the tissue (see Figure 3). The math-
ematical task in PAT is to reconstruct the spatially varying absorption coefficient
using these measurements.
While x-ray CT has a rather low contrast in soft tissues, the electromagnetic ab-
sorption coefficient at some lower frequencies shows significantly higher vari-
ation. PAT therefore provides good imaging contrast in soft tissues making it
a very promising technique for detecting various types of early cancer, such as
breast cancer or skin melanoma. In 1998, the first clinical prototype of a PAT
scanner for breast screeing has been developed by Kruger [43]. Various practical
aspects of PAT are discussed in [74].
The reconstruction of the absorption coefficient in an object under investigation
from the measured acoustic waves on the boundary of the object requires a math-
ematical model for the relationship between the absorption coefficient and the
boundary acoustic waves. Below we briefly review such a model, following the
approach presented in [33, 66].
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Mathematical modeling

Suppose the object to be investigated is supported in a domain Ω ⊂ R3 that is
illuminated with a short pule of electromagnetic energy near the visible range.
We denote by I(x, t) = J(x) j(t) the intensity of the electromagnetic energy at lo-
cation x ∈ R3 and time t ∈ R with J(x) being the spatial and j(t) the temporal
intensity distribution. The rate of absorbed electromagnetic energy is described
by the absorbed electromagnetic power r(x, t) = µabs(x) I(x, t), where µabs(x) is
the spatially varying absorption coefficient. The rate of absorbed energy causes
a temperature change which is in turn related to an increase of acoustic pressure
p(x, t). Since the pulse duration is very short, the heat transfer by conduction can
be neglected [69].
Employing the linearised equations of fluid dynamics (for details, see [27] or [66,
Section 1.5]) one shows

1
vs(x)2

∂2 p(x, t)
∂t2 −∆p(x, t) = f (x)

d j
dt

(t) , for (x, t) ∈ R3×R, (16)

with f (x) = I(x)β(x)µabs(x)/Cp(x). Here Cp(x) is the specific heat capacity, β(x)
is the thermal expansion coefficient at constant pressure and vs(x) is the speed of
sound. The wave equation (16) is augmented with the initial conditions p(x, t) = 0
for t < 0, reflecting the fact that there is no acoustic pressure before the illumina-
tion starts at t = 0.
In the following we assume that the sound speed vs = vs(x) is constant, and after
rescaling we can assume that vs equals one, and that j(t) is approximates the one-
dimensional δ-distribution. Then, by Duhamel’s principle [14, p. 81], the solution
of (16) coincides, for t > 0, with the solution of the initial value problem


(
∂2

t −∆
)

p(x, t) = 0 for (x, t) ∈ R3× (0,∞)

p(x,0) = f (x) for x ∈ R3

∂p
∂t

(x,0) = 0 for x ∈ R3.

(17)

The aim of PAT is to reconstruct the function f (x), proportional to the absorption
coefficient, from measurements of the solution of (17) taken outside of the support
of f . The particular mathematical problem to solve also depends on the way
how the acoustic signals are measured. Different measurement setups lead to
different mathematical problems. Below we shortly review the concepts of point-
like and linear integrating measurement setups, which yield to the inversion of the
spherical Radon transform in three and two dimensions, respectively.

41



Point measurement: 3D spherical Radon transform

In the standard measurement procedure used in PAT, small piezoelectric detectors
are placed on the object’s boundary and they record arriving acoustic waves there
(see Figure 4 left). These detectors can be seen as an approximation to idealised
point detectors that record the solution of (17) pointwise on the boundary ∂Ω.

detector

t

Line detectors

Figure 4: LEFT: The data measured by small piezoelectric detectors can provide
integrals of the unknown function over spheres. RIGHT: The array of the line
detectors measures the acoustic waves during the rotation around the object.

The well known explicit expression for the solution of the initial value problem
(17) in terms of the three-dimensional spherical Radon transform (see, for exam-
ple, [14, page 72]) reads

p(x, t) =
∂
∂t

[
1

4πt
(Rsph f )(x, t)

]
for (x, t) ∈ R3× (0,∞).

Integrating this expression with respect to t yields

(Rsph f )(x, t) = 4πt
∫ t

0
p(x,s)ds.

Thus, the reconstruction of the initial pressure distribution from measurements
of point detectors on the object boundary yield to the problem of inverting the
spherical Radon with centers restricted to ∂Ω.

Line measurement: 2D spherical Radon transform

Since in practice every acoustic detector has a finite size, the algorithms that are
based on the assumption of point-like measurements produce blurred reconstruc-
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tion (see [34, 64, 72]). In order to partially compensate for this effect, in [32] it
is suggested to use large planar detectors that measure integrals of the acoustic
pressure over planes. As a further development in [8, 57] so-called line detectors
have bee proposed that use integrals of the acoustic pressure over lines and which
can be efficiently realized in practice.
The measurement setup with line detectors is as follows. The devices are put into
an array of detectors that are parallel to each other, and this array is rotated around
a single axis (Figure 4 right). Let p be the solution of (17) and assume that the line
detectors are parallel to the direction e1 := (1,0,0). Also, let us write x = (x1,x′)
with x1 ∈ R and x′ ∈ R2, and denote by

p̄(x′, t) =
∫
R

p(x1,x′, t)dx1 for (x′, t) ∈ R2× (0,∞)

the pressure values integrated in direction e1. It is not hard to show that the in-
tegrated pressure p̄ satisfies the following two dimensional initial value problem
(see, for example, [7])

(
∂2

t −∆
)

p̄(x′, t) = 0 for (x′, t) ∈ R2× (0,∞)

p̄(x′,0) = f̄ (x′) for x′ ∈ R2

∂p̄
∂t

(x′,0) = 0 for x′ ∈ R2.

(18)

Here f̄ (x′) :=
∫
R f (x1,x′)dx1 is the linear projection of f in direction e1. Data of

line detectors values p(x′, t) for certain measurement positions x′ outside of the
support of f ′. Note that having obtained the linear projections f̄ from different di-
rections, the reconstruction of f can be obtained from the inversion of the classical
(linear) Radon transform studied in Section 2.
Similar to its three dimensional counterpart, the two dimensional reconstruction
problem based on (18) can be recast as the problem of inverting the spherical
Radon transform: Note that the solution of the 2D wave equation is given by (see,
for example, [40, Equation (1.24a)])

p̄(x′, t) =
1

2π
∂
∂t

∫ t

0

(
Rsph f̄

)
(x′,r)

√
t2− r2

dr for (x′, t) ∈ R2× (0,∞).

Application of standard tools for solving Abel type integral equations (see, for
example, [23, 48]) yields the following expression for Rsph f̄ in terms of the data
values: (

Rsph f̄
)
(x′,r) = 4r

∫ r

0

p̄(x′, t)√
r2− t2

dt.

Consequently, PAT with integrating line detectors yields to the problem of recon-
structing f̄ from its circular Radon transform, which is the 2D analogon of the 3D
reconstruction problem in PAT using point-like measurements.
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3.2 Inversion formulas

Exact inversion formulas for the spherical Radon transform are currently known
for boundaries of special domains, including spheres, cylinders and hyperplanes.
Recently explicit inversion formulas for elliptic domains started to appear in the
literature [2, 28, 30, 49, 54]. In [31], we showed that the formula [28] for elliptic
domains in 2D is also exact for parabolic domains.
Exemplarily we present inversion formulas from [17] for the circular Radon trans-
form with centers of integration restricted to a circle, and the inversion formulas
from [28] for boundaries of ellipses, which are also exact for circles.
Recall that B(x, t) ⊂ R2 denotes the open ball of radius t > 0 centered at x. For
a general domain Ω ⊂ R2, we denote by C∞

c (Ω) the set of all smooth functions
f : R2→ R that are compactly supported in Ω.

Theorem 6 (Inversion formulas of [17]). Let DR := B(0,R) ⊂ R2 denote the
disc of radius R centered at the origin, suppose that f ∈ C∞

c (DR) and extend
(Rsph f )(x, t) as an even function in the second variable t.
Then, for all x0 ∈DR, the function f can be recovered from Rsph f with the help of
the following formulas:

f (x0) =
1

4π2R

∫
∂DR

∫ 2R

−2R

(t∂tt−1Rsph f )(x, t)
|x0− x|− t

dtds(x),

f (x0) =
1

4π2R

∫
∂DR

|x0− x|
∫ 2R

−2R

(∂tt−1Rsph f )(x, t)
|x0− x|− t

dtds(x),

where the inner integrals are taken in the principal value sense.

Note that many researchers believed that exact reconstruction formulas in 2D exist
only for circles and lines. However recently, it was shown in [49] that the so-called
universal back-projection formula from [73] is theoretically exact for ellipsoids in
R3. In [28] such formulas have been derived for ellipses in R2. The formulas
of [49, 28] in fact can be used for arbitrary bounded convex domains. However,
in this case the formulas do not recover the underlying function exactly and give
an error. In both papers [49, 28], the corresponding error term has been explicitly
derived. The results of [28] have been generalized to arbitrary dimension in [30].
In R3, the corresponding formulas coincide with the formulas from [49]. Note
that for the special case of spherical domains the formulas of [30] also coincide
with the formulas of [45]. Very recently one of the formulas of [17, 18] has been
generalized to elliptical domains in [65, 29].
The inversion formulas from [28] read as follows.

Theorem 7 (Inversion formulas of [28]). Suppose Ω⊂ R2 is a circular or ellip-
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tical domain and let f ∈C∞
c (Ω). Then, for all x0 ∈Ω, the following holds:

f (x0) =
1

2π2 ∇x0 ·
∫

∂Ω
νx

∫ ∞

0

Rsph f (x, t)

t2−|x0− x|2
dtds(x),

f (x0) =
1

2π2

∫
∂Ω
〈νx,x0− x〉

∫ ∞

0

(∂tt−1Rsph) f (x, t)

t2−|x0− x|2
dtds(x). (19)

Here νx denotes the outwards pointing unit normal to ∂Ω and the inner integrals
are understood in the principal value sense.

In [31], we showed that the second formula in the above theorem is also exact for
the case where Ω is a parabolic domain.
If one has the pure wave data p̄(x, t), i.e. the solution of the initial value prob-
lem (18) is given on the boundary of an elliptic or parabolic domain Ω, then the
corresponding initial pressure distribution can be recovered by means of the fol-
lowing formula (see [7, 28, 31]):

f̄ (x0) =
1
π

∫
∂Ω
〈νx,x0− x〉

∫ ∞

|x0−x|

(
∂tt−1 p̄

)
(x, t)√

t2−|x0− x|2
dtds(x), (20)

for any reconstruction point x0 ∈Ω.

3.3 Numerical results

The formulas (19), (20) can be implemented as outlined in [7, 17]. For illustra-
tion, we present numerical results for the recovery from the wave data (the solu-
tion (18)) in two spatial dimensions. We consider a function f̄ : R2→ R given by
the phantom shown in Figure 5. The same phantom has been used for testing the
numerical performance of the reconstruction formulas in [7, 28, 31]. The support
of the corresponding function f̄ is included in the parabolic domain

P =
{
(a,b) ∈ R2 | b > 0.6a2 −1

}
.

For the numerical realization of formula (20), one first has to replace the integral
over ∂P by the integral over a curve with finite length. We take the following
integration curves:

Γi =
{
(a,b) ∈ R2 | b = 0.6a2 −1, a ∈ [−ai,ai]

}
for i = 1,2,3,

with a1 = 2, a2 = 4, a3 = 6, respectively. The simulated wave data p̄ on the curve
Γ1 is presented in Figure 5.
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Figure 5: LEFT: The phantom in the parabolic domain P that is used for the
numerical results. RIGHT: The simulated wave data p̄ on the recording curve Γ1.
The variable a is considered as the curve parameter.
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Figure 6: The numerical reconstructions f̄i, i = 1,2,3 (from left to right) on the
reconstruction subdomain P̄. The gray scale is as for the phantom of Figure 5.

Let us present the reconstructions f̄i(x) that are obtained by the numerical real-
ization of formula (20) where the integration curve ∂P is replaced by Γi. These
reconstructions on the reconstruction subdomain (the set where the inversion for-
mula is evaluated)

P̄ =
{
(a,b) ∈ R2 | 0.6a2 −1 < b < 0.6 ·22 −1, a ∈ (−2,2)

}
at the points

{
0.015(i, j) : (i, j)} ∈ Z2}∩ P̄ are shown in Figure 6. The time step

size for the inner integral in (20) is taken 0.01. The integration curves are dis-
cretized such that the distance between two consecutive points is in the interval
[0.0099,0.0101]. The numbers of the discretization points on the considered inte-
gration curves are the following: 659, 2166, 4617.
The reconstruction errors for the finite parabolas Γi decrease as the length of Γi
increases. It should be noted that the reconstruction problem in the case of the
open curves Γi corresponds to the so-called limited view problem [46, 55, 56, 75].
For each reconstruction point inside the reconstruction subdomain P̄ there is a
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considerable set of directions for which the boundary wave data is missing, which
is known to create reconstruction artefacts. We refer to [31] for the comparison
with the reconstructions on closed parabolas and ellipses.

4 Concluding remarks

In this note we have given a brief introduction to CT and presented mathematical
results serving as basis of FBP reconstruction algorithms. We thereby focused on
two prime examples, namely classic x-ray CT and the more recent PAT. These
applications require inversion of the classical Radon transform and the spherical
Radon transform, respectively. The most common algorithm for these applications
is the filtered backprojection (FBP) algorithm, which implements exact inversion
formulas we presented above.
Note that we mainly focused on the development of FBP algorithms for inverting
Radon type transforms. In some tomographic applications iterative reconstruction
algorithms are more common. For example, in single photo emission tomogra-
phy (SPECT), the statistical noise is an important issue, and iterative reconstruc-
tion algorithms based on a maximum likelihood minimization are favoured. A
prominent iterative procedure for maximum likelihood minimization is the EM
algorithm (expectation maximisation algorithm) of Dempster, Laird and Rubin
[11], which has been introduced to computed tomography in [68, 71]. Note that
also the first reconstruction algorithms in x-ray CT have been of iterative nature
(see [37, 22]). The used algorithm became popular known under the name ART
(Algebraic Reconstruction Technique) and was later (see [26]) identified as Kacz-
marz’s iterative procedure [41] for the solution of system of linear equations. See,
for example, [36, 48, 50] for more details on the use of iterative reconstruction
algorithm in CT.
Finally, note that some tomographic application are better modelled as parameter
identification problems for partial differential equations. This often yields to non-
linear inverse problems. See [13, 38, 39, 47, 66, 70] for general solution methods
approaching such type of problems.
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C. Alsina, R. B. Nelsen: Bezaubernde Beweise. Eine Reise durch die Eleganz
der Mathematik. Aus dem Englischen von T. Filk. Springer Spektrum, Springer
Berlin, Heidelberg, 2013, xiv+326 S. ISBN 978-3-642-34792-4 P/b 23,32.

Bezaubernde Beweise hält, was der Buchtitel verspricht: Das Buch ist voll mit
eleganten und instruktiven Beweisen aus verschiedensten Gebieten der Mathema-
tik, darunter viele bekannte Klassiker wie die Divergenz der harmonischen Reihe,
die Irrationalität von

√
2, e und π, der kleine Satz von Fermat oder die Eulersche

Polyederformel.
Die weitaus meisten Sätze, die bewiesen werden, sind elementarer Natur und
benötigen nur Schulkenntnisse der Mathematik. Besonders stark ist dabei die Geo-
metrie in all ihren Ausprägungen (Euklidische Geometrie, Zerlegungsgeometrie,
spezielle Kurven, dreidimensionale Geometrie, etc.) vertreten. Jedes Kapitel ist
zudem mit einer Liste von Übungsaufgaben versehen, anhand derer man die eige-
nen Fertigkeiten testen kann.
Das Buch eignet sich ausgezeichnet, um vor allem junge Leute für die Eleganz und
Schönheit mathematischer Beweise zu begeistern. Durch den relativ elementaren
Inhalt kann man es einem sehr breiten Publikum empfehlen, insbesondere auch
Nichtmathematikern, die in die Welt der Beweise eintauchen wollen.

S. Wagner (Stellenbosch)

L. Barreira, Y. Pesin: Introduction to Smooth Ergodic Theory. (Graduate
Studies in Mathematics, Vol. 148.) American Mathematical Society, Providence,
Rhode Island, 2013, ix+276 S. ISBN 978-0-8218-9853-6 H/b $ 65, 47,–.

The book at hand provides an introduction to smooth ergodic and nonuniform
hyperbolicity theory. It represents a revised and largely expanded version (100+
pages) of the authors’ Lyapunov Exponents and Smooth Ergodic Theory (Univ.
Lect. Ser. 23, AMS, Providence RI, 2002) and in turn their 1999 survey on the
topic. In particular, it contains a systematic account of Pesin’s original four papers
from the 1970s establishing the deep theory of nonuniformly hyperbolic smooth
dynamical systems including detailed proofs and well-chosen examples.
In the first part, aptly titled “Core of the Theory”, the authors begin with an infor-
mative and motivating chapter containing various examples of hyperbolic systems
including Anosov diffeomorphisms and flows, Katok’s map on the 2-torus and
systems with nonzero Lyapunov exponents on surfaces. An elegant introduction
to the finite-dimensional theory of Lyapunov exponents, based on three axioms,
is presented in Chapter 2; it includes a discussion of the central regularity notions
and also describes the corresponding theory in discrete time. Afterwards applica-
tions to the stability theory of nonautonomous ODEs are given. Here, nonetheless
some information on Bohl exponents yielding the arguably more appropriate uni-
form stability notions would have been desirable. Elements of the “Nonuniform

54



Hyperbolicity Theory” (systems with nonzero exponents, regular sets, partial hy-
perbolicity and the Hölder continuity of invariant distributions) are discussed, as
well as “Cocycles over Dynamical Systems”. As a matter of course, one high-
light is a proof and the treatment of Oseledets’ celebrated Multiplicative Ergodic
Theorem. The following chapters deal with local invariant manifolds, which are
constructed using a Lyapunov-Perron approach and a quantitative version of the
implicit mapping theorem, foliations, and their absolute continuity. Further topics
include ergodic properties of smooth hyperbolic measures and geodesic flows on
surfaces, as well as their ergodic properties.
The second part deals with “Selected Advanced Topics”. Cone techniques are
suggested to construct Lyapunov functions guaranteeing nonzero exponents. Also
partially hyperbolic diffeomorphisms are addressed, and the authors return to fo-
liations lacking absolute continuity. Hyperbolic diffeomorphisms with countably
many ergodic components and the Shub-Wilkinson map serve as further exam-
ples for the occurrence of nonzero exponents. After a chapter on Anosov rigidity,
Pugh’s example of C1-pathological behavior completes the presentation.
Although not the only monograph in this area, without question the widely self-
contained book can be warmly recommended for an advanced course on Dynami-
cal Systems or Ergodic Theory; it contains over 80 exercises. The advanced topics
might also be appropriate for a subsequent seminar.

Ch. Pötzsche (Klagenfurt)

E. Behrends: Fünf Minuten Mathematik. 100 Beiträge der Mathematik-Ko-
lumne der Zeitung Die Welt. Mit Geleitwort von N. Lossau, Springer Spektrum,
Springer Fachmedien, Wiesbaden, 2013, xvii+262 S. ISBN 978-3-658-00998-4
P/b 25,65.

Am 12. Mai 2003 startete der Autor in der überregionalen Zeitung ”Die Welt“
eine regelmäßige Kolumne zur Mathematik. In den darauffolgenden zwei Jahren
entstanden so 100 Beiträge zu sehr unterschiedlichen mathematischen Themen,
die ein breites Spektrum abdecken. Die Zielsetzung war es, über mathematische
Fragestellungen in einer ansprechenden Form, verpackt in spannenden und moti-
vierenden Geschichten aus dem wirklichen Leben, zu informieren – ohne große
fachliche Kenntnisse beim Leser voraussetzen zu müssen. Auf diese Weise sollte,
in knapper und verständlicher Form, gezeigt werden, wie Mathematik unser Le-
ben durchdringt. Dem Autor war es dabei wichtig, zu zeigen, dass Mathematik
nützlich und faszinierend ist, und dass man ohne Mathematik die Welt nicht wirk-
lich verstehen kann. Durch die Übernahme dieser Kolumnen in Buchform sollte
eine weitere Leserschaft erschlossen werden; das vorliegende Werk ist bereits die
3. Auflage. Für die Buchform wurden die Beiträge überarbeitet und ergänzt, z.B.
durch Bilder, Illustrationen, erläuternde Texte und Filme (auf YouTube), was letzt-
lich den Umfang mehr als verdoppelte. Dieser sehr ansprechende Ansatz hat auch
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international ein breites Echo gefunden; das Buch wurde bereits in mehrere Spra-
chen übersetzt. Der Grad der Zufriedenheit des Lesers hängt sicher davon ab, was
dieser sich erwartet und wie weit er auch bereit und offen ist, sich in die fas-
zinierende Welt mathematischer Aspekte derselben führen zu lassen. Das Werk
stellt ohne Zweifel einen wertvollen Beitrag dar, die Mathematik einem breiteren
Publikum auf erbauliche Weise näherzubringen.

G. Haring (Wien)

A. Bonato, R. J. Nowakowski: The Game of Cops and Robbers on Graphs.
(Student Mathematical Library, Vol. 61.) American Mathematical Society, Provi-
dence, Rhode Island, 2011, xix+276 S. ISBN 978-0-8218-5347-4 P/b $ 45,–.

This is a delightful book about a simple game. The game is played by two players.
One player controls the cops, who are trying to catch the robber, and the other
controls the robber. Cops and robbers are restricted to the vertices of a finite
or infinite graph and move in each round to neighboring vertices. The smallest
number of cops needed to catch the robber is the cop number.
The prerequisites of the book are basic graph theory, some mathematical matu-
rity and background in sets, probability and algorithms. Nonetheless, it leads to
or touches areas such as complexity, probabilistic arguments, homomorphisms,
products of graphs, and the structure of finite and infinite graphs.
The first chapter introduces the game, supplies notation, basic results, examples,
and provides the motivation to what comes later. It also gives an asymptotic upper
bound on the cop number. The second chapter characterizes k-cop win graphs,
which requires retractions, vertex orderings, relations and graph products. The
third chapter discusses Meyniel’s Conjecture that O(

√
n) cops suffice to catch a

robber on a graph with n vertices. Here randomized methods are introduced. This
provides the basis for Cops and Robbers on random graphs, which is the topic of
chapter six. Chapter four considers the cop number in graph products and graph
classes. For example, it is shown that the cop number in planar graphs is at most
three. Graphs of higher genus are also discussed. Chapter five treats algorithms
and complexity issues, and chapter seven cops and robbers in infinite graphs. It
is known that infinite graphs exhibit unusual properties not seen in finite graphs;
this is also true for the cop number. For example, paradoxically large families
of infinite vertex-transitive graphs are constructed via weak strong products of
graphs.
In chapter eight the rules of the game are changed, but the core of the game re-
mains that a set of good guys tries to capture, stop, or contain a set of bad guys.
Several of these games are then treated in chapter nine.
The book contains a large selection of worked out examples and exercises. It
could be the basis of a good second course in graph theory.

W. Imrich (Leoben)

56



C. Cottin, S. Döhler: Risikoanalyse. Modellierung, Beurteilung und Manage-
ment von Risiken mit Praxisbeispielen. (Studienbücher Wirtschaftsmathematik)
Springer Spektrum, Springer Fachmedien, Wiesbaden, 2013, xviii+456 S. ISBN
978-3-658-00830-7 P/b 37,34.

Das vorliegende Buch gibt einen sehr praxisorientierten Überblick zu verschie-
denen Themen aus der Risikoanalyse und dem Risikomanagement und basiert
auf Lehrveranstaltungen der Autoren. Dabei werden auch viele konkrete Beispie-
le vorgeführt, was die Verknüpfung zwischen Theorie und Anwendung schließt.
Das Buch unterstützt dabei sowohl die Statistiksoftware R als auch das Tabellen-
kalkulationsprogramm Microsoft Excel.
Einführend beginnt das Buch mit einem geschichtlichen Überblick der Risiko-
analyse sowie gesetzliche Rahmenbedingungen (u.a. Basel III, Solvency II) und
führt etliche Verteilungen ein, die für die Modellierung von Risiken verwendet
werden können. In weiterer Folge wird auf einfache Risikokennzahlen, Risikoent-
lastungsstrategien, Auswahl und Entwicklung von Modellen und Simulationsme-
thoden eingegangen. Die vorliegende 2. Auflage ist vor allem um Aspekte der Ex-
tremwerttheorie sowie der Zerlegung ausgewählter strukturierter Finanzprodukte
(Zertifikate) ergänzt. Jedes Kapitel des Buchs schließt mit Aufgaben und einem
Selbsttest. Das Buch kann als Lehrbuch für einführende Vorlesungen sowie auch
für das Selbststudium (bei geringem bis keinem Vorwissen) im Risikomanage-
ment und der Risikoanalyse empfohlen werden, mathematische Grundkenntnisse
aus den ersten beiden Semestern sollten vorhanden sein.

M. Predota (Wien)

H. Dym: Linear Algebra in Action. (Graduate Studies in Mathematics, Vol. 78.)
American Mathematical Society, Providence, Rhode Island, 2013, xix+585 S.
ISBN 978-1-4704-0908-1 H/b $ 91, 65,60.

Around here, the two main courses to master in your first semester are analysis
and linear algebra. Usually, except for the real numbers, these two courses have
nothing in common. The present textbook does not follow this philosophy and
according to the reviews of the first addition this approach was well received.
The second edition has been extensively revised plus there is new material on
linear programming, extreme points for polyhedra and a Nevanlinna-Pick inter-
polation problem, the mathematics behind Google, Drazin inverses, band inverses
and applications of the singular value decomposition together with several new
exercises.
In summary, a wonderful book has become even better.

G. Teschl (Wien)
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O. Forster, T. Szymczak: Übungsbuch zur Analysis 2. Aufgaben und Lösun-
gen. Springer Spektrum (Grundkurs Mathematik), Springer Fachmedien, Wiesba-
den, 2013, viii+192 S. ISBN 978-3-658-00335-7 P/b 16,40.

Dies Buch enthält Aufgaben und Lösungen zu dem Buch Analysis 2 von Otto
Forster. Die Analysisreihe von Forster ist seit Jahrzehnten erfolgreich und hat
Spitzenauflagen erzielt. Dies Übungsbuch enthält auf ca. 30 Seiten Aufgaben,
und auf ca. 120 Seiten ausführliche Lösungen von fast allen Aufgaben. Die be-
handelten Themen sind insbesondere Differentialrechnung in mehreren Variablen
und Differentialgleichungen. Die Aufgaben sind klassisch, so wie sie jeder Stu-
dierende in dieser oder ähnlichen Form einmal bearbeitet haben sollte. In dieser
aktuellen 8. Auflage sind einige Aufgaben und Lösungen bearbeitet oder ergänzt
worden.

C. Elsholtz (Graz)

D. W. Hoffmann: Grenzen der Mathematik. Eine Reise durch die Kerngebiete
der mathematischen Logik. (Springer Spektrum) Berlin 2013, ix+438 S. ISBN
978-3-642-34719-1 30,83.

Dies Buch ist eine sehr schöne Einführung in die mathematische Logik. Das The-
ma ist vermutlich als ”trocken“ gefürchtet, hier aber wird es durch den Schreibstil
und die Zusatzinformationen geradezu spannend!
Zu den behandelten Themen gehören: Geschichte der mathematischen Logik,
formale Systeme, axiomatische Zahlentheorie und Mengenlehre, Beweistheorie,
Gödelsche Unvollständigkeitssätze, Berechenbarkeitstheorie, algorithmische In-
formationstheorie und Modelltheorie.
Dem Autor gelingt es, zu dem klassischen Material im Haupttext eine Fülle von
zusätzlichen Materialien, wie z.B. Abbildungen und Fotos, Ausschnitte der Ori-
ginalarbeiten, historische Bemerkungen und Übungsaufgaben, einzuarbeiten.
Das Buch will im Zweifelsfall eher die Ideen erklären, als mit der Fülle von De-
tails erschlagen, für die dann auf weiterführende Literatur verwiesen wird. Zu den
Übungsaufgaben gibt es auf einer Webseite Lösungen, die man sich einzeln (!)
herunterladen kann. Dies ist eine interessante Idee, um das gedankenlose, mas-
senhafte Kopieren der Lösungen zu verhindern.
Alles in allem ein sehr schönes Buch!

C. Elsholtz (Graz)
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J.-M. De Koninck, F. Luca: Analytic Number Theory. Exploring the Anatomy
of Integers. (Graduate Studies in Mathematics, Vol. 134.) American Mathematical
Society, Providence, Rhode Island, 2012, xviii+414 S. ISBN 978-0-8218-7577-3
H/b $ 75,–.

There exists a number of excellent books on analytic number theory; for instance,
Davenport’s “Multiplicative Number Theory”, G. Tenenbaum’s “Introduction à la
théorie analytique et probabiliste des nombres”, Iwaniec/Kowalski’s “Analytic
Number Theory” and Montgomery/Vaughan’s “Multiplicative Number Theory I:
Classical Theory”. The book under review is a down-to-earth introduction to the
various questions and problems arising in analytic number theory whereby the
main focus is on an elementary and easily accessible presentation of the material.
A great asset to the text are the 263 exercises: The reader can find the solutions
of all the even-numbered problems in the book. Students will greatly benefit from
working through the exercises of this book.
The book starts with recalling a few preliminary techniques from real analy-
sis (Chapter 1). The authors then develop the elementary prime number theory
(Chebyshev estimates) in Chapter 2; Chapters 3 to 5 are devoted to the Newman
proof for the prime number theorem (without error term), all tools from complex
analysis are recalled in the Appendix. Chapter 6 and 7 treat the global/local behav-
ior of arithmetic functions (Wintner’s theorem, Turán-Kubilius inequality). Chap-
ter 8 gives a primer on the distribution of the values of Euler’s function, Chapter
9 deals with smooth numbers. Chapter 10 is on the Hardy-Ramanujan inequality
and on Landau’s theorem. In Chapter 11 the authors explain the abc Conjecture,
and Chapter 12 introduces sieve methods (Brun sieve, Selberg sieve, Large sieve)
with applications (Brun-Titchmarsh theorem etc.). The reader is sometimes re-
ferred to the literature for the proofs of deep theorems (Friedlander-Iwaniec the-
orem etc.). Chapters 13 to 15 treat the problem of counting prime numbers in
arithmetic progressions, and various applications are given. In the final chapter
(Chapter 16) the authors study the behavior of the index of composition of an
integer, a notion introduced by De Koninck and Doyon in 2003.
The overall presentation is remarkably fresh and therefore best suited to motivated
undergraduate or graduate students with interests in number theory.

T. Stoll (Nancy)

B. Landman, M. B. Nathanson et al. (eds): Combinatorial Number Theory.
Proceedings of the “Integers Conference 2011”, Carrollton, Georgia, Oct. 26–
29, 2011. (Proceedings in Mathematics 11.) De Gruyter, Berlin/Boston, 2013,
ix+157 S. ISBN 978-3-11-028048-7 H/b 119,95.

Dies sind die Proceedings der “Integers Conference 2011”. Der Band enthält zehn
Beiträge, die ein breites Spektrum abdecken, von additiven und multiplikativen
Problemen in der Zahlentheorie über Färbungsprobleme bis hin zu zwei Arti-
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keln über kombinatorische Spiele. Die Artikel richten sich an Forscherkollegen,
dürften aber für Kombinatoriker recht zugänglich sein.

C. Elsholtz (Graz)

L. Lovász: Large Networks and Graph Limits. (AMS Colloquium Publica-
tions, Vol. 60.) American Mathematical Society, Providence, Rhode Island, 2012,
xiv+475 S. ISBN 978-0-8218-9085-1 H/b $ 99,–, 74,90.

Das neueste Buch des bekannten Kombinatorikers László Lovász bietet einen
ausgezeichneten Einblick in die aktuellen Entwicklungen in der Graphentheorie.
Große Netzwerke (Stichwort: Internet) gewinnen mehr und mehr an Bedeutung,
und diese Tatsache hat auch zu neuen Ideen in der Graphentheorie geführt.
Wie der Name schon verrät, liegt das Hauptaugenmerk des Buchs auf großen Gra-
phen und deren Limiten, es kommen aber auch diverse andere Bereiche der Gra-
phentheorie zur Sprache, und es werden zahlreiche Querverbindungen hergestellt,
etwa zur klassischen extremalen Graphentheorie.
Das Buch beginnt mit einer kurzen, informellen Einführung in das Thema. Es
folgt ein Kapitel über Graphhomomorphismen und deren Eigenschaften. Das zen-
trale dritte Kapitel handelt von Grenzwerten dichter Graphen. Hier wird insbe-
sondere das noch recht junge Konzept des Graphons besprochen. Die Konvergenz
von Graphen mit beschränkten Knotengraden wird im vierten Kapitel erläutert.
Einem kurzen Ausblick samt Appendix schließt sich ein umfangreiches Literatur-
verzeichnis an, das größtenteils aus Arbeiten jüngeren Datums besteht.
Bei der Lektüre dieses Buchs wird klar, wie reichhaltig das Studium großer Netz-
werke ist und zu welch tiefgründigen mathematischen Konzepten es einen führen
kann. Der Autor ist ein Experte auf dem Gebiet wie kaum ein zweiter, und so kann
man Large Networks and Graph Limits Graphentheoretikern, aber auch anderen
Mathematikern, die sich für die aktuellen Trends in der Graphentheorie interes-
sieren, uneingeschränkt empfehlen.

S. Wagner (Stellenbosch)

B. Luderer: Mathe, Märkte und Millionen. Plaudereien über Finanzmathe-
matik zum Mitdenken und Mitrechnen. (Sachbuch) Springer Spektrum, 2013,
x+168 S. ISBN 978-3-658-02773-5 P/b 19,99.

Dieses Buch teilt sich inhaltlich in zwei Teile. Teil 1 mit dem Titel ”Zinsen, Kur-
se und Renditen – klassische Finanzmathematik“ umfasst 19 Teilkapitel, die sich
insbesondere den Themen Zinsen, Zinseszinsen und Fragen der klassischen fi-
nanzmathematischen Investionsrechnung widmen.
Teil 2, mit dem Titel ”Produkte und Strategien – Mathematik der Finanzmärk-
te“, widmet sich überwiegend dem Bereich der Finanzmärkte unter Berücksichti-
gung der sogenannten ”Greeks“, bis hin zu Problemen der kalten Progression, der
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Berechnung der Einkommenssteuer, der Berechnung von Swaps und der Black-
Scholes-Formel sowie anderen Fragen aus diesem Fachbereich. Jeder dieser Teile
unterteilt sich weiter: Teil 1 hat 19, Teil 2 hat 23 Teilkapitel.
Diese Teilkapitel bestehen jeweils aus einer kleinen Geschichte mit einem ein-
schlägigen, mathematisch formulierbaren Problem. Es ist im Wesentlichen eine
sehr gelungene Darstellung des Bereichs der heutigen Bankpraxis und der dort
verwendeten Terminologie. Ähnliches gilt für den Bereich der Finanzmärkte, wo
Themenbereiche, die heute in den öffentlichen Finanzmarktmedien Themen dar-
stellen, diskutiert und erklärt werden. Natürlich hat das Darstellungsdetail Gren-
zen. Über diese Grenzen kann man etwas anderer Meinung sein und sich vielleicht
etwas mehr Tiefe bei manchen Formeln vorstellen. Dennoch ergibt sich der Ein-
druck einer sehr gelungen Auswahl aus den gewählten Bereichen.
Wenn man ins Detail sieht, wie z.B. in Kapitel 8 des ersten Teils, stellt man
fest, dass gewisse Ungereimtheiten in der Terminologie bestehen, die verbesse-
rungsfähig sind Z.B. wird auf Seite 25 in die Formel, die mit einem Stern gekenn-
zeichnet ist, eingesetzt, wobei bei der Gleichung in der letzten Zeile der Logarith-
mus vergessen wurde und zudem mit i der Zinssatz p bezeichnet wird, obwohl
in die Formel, wenn p den Zinssatz bezeichnet, mit i der Wert p/100 eingesetzt
gehört; besonders für die intendierte Zielgruppe erscheint dies störend.
Es ergibt sich also der Eindruck, dass dieses Buch nochmals sorgfältig redigiert
gehört. Ansonsten ist es sehr positiv zu sehen, da es den Konsumenten vor allem
im 1. Teil sehr viel praktische Beispiele bietet, die ihm erlauben, Angebote, wie sie
heute von den Banken dem Kunden gemacht werden, realistischer zu beurteilen.
Der zweite Teil ist bereits für eine Klientel gedacht, die sich etwas mit den Fi-
nanzmärkten beschäftigt, aber auch hier ist der Themenbereich so gewählt, dass
er zum Verständnis für bekannte Medien wie z.B. dem Wallstreet Journal und
anderen, die sich mit Finanzmärkten befassen, eine Unterstützung bietet.

W. Janko (Wien)

K. Nipp, D. Stoffer: Invariant Manifolds in Discrete and Continuous Dynam-
ical Systems. (Tracts in Mathematics 21.) EMS, Zürich, 2013, ix+216 S. ISBN
978-3-03719-124-8 H/b 58,–.

Without question, invariant manifolds are an indispensable and widely used tool
in the geometric theory of dynamical systems. Their history can be traced back
to Hadamard (graph transform) and Perron. While the approach of Perron has a
functional-analytical flavor, the graph transform is strongly based on geometric
ideas and intuition.
The present research monograph by Nipp and Stoffer – two experts in the field –
is not only a systematic and well-written account to invariant manifolds illustrat-
ing how useful and modern Hadamard’s graph transform still is; it also underlines
their wide applicability. Indeed, the book is subdivided into three parts dealing
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with discrete dynamical systems, finite-dimensional ODEs and various applica-
tions with a focus on numerical dynamics.
Initial point are flexible existence theorems for repulsive, attractive resp. hyper-
bolic invariant manifolds of Lipschitzian mappings defined on the products of Ba-
nach spaces. Subsequently their behavior under perturbation (including explicit
estimates) and their smoothness based on the fiber-contraction principle is shown.
Results on invariant foliations, in order to establish an asymptotic phase prop-
erty, as well as a smoothness proof conclude the first part. By means of a time-
T -mapping the above results are transferred to the continuous time situation of
autonomous ordinary differential equations; this approach, based on the previous
discrete time results, is also available for more general semiflows on infinite-di-
mensional state spaces. The remaining half of the book is devoted to applications
within the field of dynamical systems; they begin with the classical Hadamard-
Perron theorem on the existence of stable/unstable manifolds of a hyperbolic fixed
point; strongly-stable manifolds (now in an ODE setting) are considered as well.
One finds the interesting result (originally due to Kirchgraber) that for every lin-
ear multistep method there exists an asymptotically equivalent one-step method
for the numerical solution of ODEs. The “slow” invariant manifolds of singularly
perturbed differential equations are constructed, both in an attractive, as well as a
hyperbolic framework. Thereafter, (stiff) Runge-Kutta methods applied to singu-
larly perturbed problems are investigated. Results on invariant curves of perturbed
harmonic oscillators, blow-up in singular perturbations and Runge-Kutta methods
in differential-algebraic problems conclude the presentation.
The authors’s intention is to provide easily applicable and yet largely quantitative
results – they succeed in both respects. The book will be a helpful tool for re-
searchers in the field and moreover, the third part on applications might serve as
basis for an advanced seminar.

Ch. Pötzsche (Klagenfurt)

T. Tao: Topics in Random Matrix Theory. (Graduate Studies in Mathemat-
ics, Vol. 132.) American Mathematical Society, Providence, Rhode Island, 2012,
x+282 S. ISBN 978-0-8218-7430-1 H/b $ 64,–.

Die Theorie der Zufallsmatrizen hat in der jüngsten Vergangenheit einen enormen
Aufschwung erfahren und sich zu einem sehr umfangreichen Forschungsgebiet
mit zahlreichen Querverbindungen zu anderen Bereichen der Mathematik sowie
zur Physik entwickelt. Es ist daher unmöglich, den aktuellen Stand dieses Themas
in seiner Gesamtheit in einem Band darzustellen. Auch der Autor des vorliegen-
den Buchs beschränkt sich auf einen prominenten Teilbereich der Zufallsmatri-
zen, nämlich auf die Spektralverteilung s genannter Ensembles von IID-Matri-
zen sowie von symmetrischen und Hermiteschen Wigner-Matrizen. Die Betrach-
tung schließt die wichtigen Klassen der Bernoulli-Ensembles und der Gaußschen
Orthogonal- bzw. Unitär-Ensembles ein.

62



Das erste Kapitel des Buchs bietet eine knappe Wiederholung aller im Folgen-
den benötigten Fakten aus Wahrscheinlichkeitstheorie und Linearer Algebra. Da-
bei werden grundlegende Kenntnisse aus der Maßtheorie und der Spektraltheorie
Hermitescher Matrizen vorausgesetzt.
Herzstück des Bands ist das zweite Kapitel mit folgenden Themen (Abschnitten):
Konstruktion von Maßen; der Zentrale Grenzwertsatz; die Operatornorm von Zu-
fallsmatrizen; das semizirkulare Gesetz; die freie Wahrscheinlichkeit; Gaußsche
Ensembles; der kleinste Singulärwert; das zirkulare Gesetz. Dabei beschränken
sich die ersten zwei Abschnitte bewusst auf skalare Zufallsvariablen, um die bei
der Behandlung von Zufallsmatrizen benötigten Konzepte vorzubereiten. Eine
methodische Besonderheit stellen die (rund 200) Übungsaufgaben dar, die in vie-
len Fällen weitere Resultate zum Inhalt haben. Ihr Beweis erfordert die Bereit-
schaft des Lesers, sich mit dem jeweils davor präsentierten Stoff aktiv auseinan-
derzusetzen; manchmal bieten unterstützende Hinweise eine kleine Hilfestellung.
Die Mühe wird belohnt durch wachsende Vertrautheit mit Hilfsmitteln und Be-
weistechniken.
Das dritte Kapitel befasst sich mit Themen, die in enger Beziehung zum vori-
gen Kapitel stehen bzw. Anwendungen der dort entwickelten Theorie darstel-
len: die Dyson-Brownsche Bewegung, die Golden-Thompson-Ungleichung, der
Dyson- und Airy-Kern Gaußscher Unitär-Ensembles (GUE) und die mesoskopi-
sche Struktur von GUE-Eigenwerten.
Der Autor legt mit seinem Werk einen übersichtlich gestalteten, gut lesbaren Text
vor, der sich an Forscher auf dem Gebiet der Zufallsmatrizen wendet, sich aber
auch gut als Grundlage für ein Seminar oder eine Spezialvorlesung eignet. Wie
bereits angedeutet, konzentriert sich hier Terence Tao auf einen Teilbereich der
Zufallsmatrizen. Wer sich beispielsweise näher mit invarianten Matrizenensem-
bles oder Anwendungen in der Zahlentheorie und Physik befassen möchte, ist
mit den neueren Monografien von Anderson-Guionnet-Zeitouni (2010), Forrester
(2010) und Mehta (2004) gut beraten.

A. R. Kräuter (Leoben)

M. Willem: Functional Analysis. Fundamentals and Applications. (Corner-
stones, Birkhäuser) Springer New York, Heidelberg, Dordrecht, London 2013,
xii+287 S. ISBN 978-1-4614-7003-8 H/b 41,64.

The present textbook is a very nice introduction to functional analysis with em-
phasis on applications to (elliptic) partial differential equations. In fact, the text is
highly optimized to get to these applications without much ado, and hence many
topics one might expect from a functional analysis course are only briefly touched
our even missing at all.
After some preparatory material on continuity and convergence the text starts by
introducing Lebesgue integration. This is done via the Daniell approach and hence

63



avoids the usual construction of the Lebesgue measure via outer measures (equiv-
alence of this approach with the usual one is established along the way). There
follow a brief chapter on Banach and Hilbert spaces, and chapters on Lebesgue
spaces (including their duals), Sobolev spaces, and capacity. The book culmi-
nates in a final chapter on elliptic problems where the isoperimetric inequality, the
Pólya-Szegő, and the Rayleigh-Faber-Krahn inequalities are proven. The book
ends with an appendix on calculus topics and a nice epilog on the historical de-
velopment of functional analysis.
So if you are happy with the selection of topics, this books gives you a streamlined
and well written introduction which leads into a solid preparation for further stud-
ies in the direction of partial differential equations. It might be a bit though for
self-study due to the lack of examples and text between theorems. Nevertheless I
consider it a welcome contribution to the current literature in this subject.
As a minor remark let me mention that the author sometimes does not adhere to
common denomination: For example, what is called normal convergence in the
text is usually known as absolute convergence, and simple convergence is usually
known as strong convergence.

G. Teschl (Wien)
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Nachrichten der Österreichischen
Mathematischen Gesellschaft

Preise der Österreichischen Mathematischen Gesellschaft

Der Förderpreis des Jahres 2014 geht an Dr. Christoph Haberl (SAP Wien). Ei-
ne Würdigung wird im Rahmen des Berichts über die Generalversammlung der
ÖMG im nächsten Heft dieser Zeitschrift erscheinen.
Die Studienpreise des Jahres 2014 gehen an Frau Dr. Annegret Burtscher (Univ.
Hannover, Dissertation an Univ. Wien und Univ. Pierre et Marie Curie, Paris 6,
unter der Betreuung von J. Grant und Ph. LeFoch) und Frau Dr. Anna Geyer (Univ.
Autònoma de Barcelona, Dissertation an der Univ. Wien unter der Betreuung von
A. Constantin).
Die Österreichische Mathematische Gesellschaft gratuliert den Preisträgerinnen
und Preisträgern herzlich.

START-Preise 2014 für Mathematikerinnen und Mathematiker

Am 16. Juni 2014 gab der Fonds zur Förderung der wissenschaftlichen Forschung
(FWF) die Gewinner der heurigen START-Preise bekannt. Darunter sind Mathi-
as Beiglböck (Univ. Wien, Optimaler Transport und Robuste Finanzmathematik)
und Karin Schnass (Univ. Innsbruck, Optimierung, Modelle & Algorithmen für
Dictionary Learning). Die ÖMG gratuliert herzlich zu diesem großen Erfolg.

Ehrendoktorat für Harald Niederreiter an der Universität Linz

An Prof. Harald Niederreiter (Johann Radon Institute for Computational and Ap-
plied Mathematics der Österreichischen Akademie der Wissenschaften in Linz)
wurde am 25. Juni 2014 das Ehrendoktorat der Technischen Wissenschaften der
Johannes Kepler-Universität Linz verliehen. Prof. Niederreiter ist Ehrenmitglied
der ÖMG.
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Schülerinnen- und Schülerpreis für herausragende Fachbereichsarbeiten in
Mathematik oder Darstellender Geometrie 2014

Seit dem Jahr 2009 vergibt die ÖMG einen Preis für herausragende Fachbereichs-
arbeiten aus Mathematik und Darstellende Geometrie, der auch vom Bundesmi-
nisterium für Unterricht, Kunst und Kultur unterstützt wird. Insgesamt wurden in
diesem Jahr 17 Arbeiten aus ganz Österreich eingereicht. Es war sehr erfreulich,
dass von den 17 Einreichungen 11 von Mädchen kamen. Alle Beiträge zeichneten
sich durch hohes mathematisches Niveau, Qualität der Darstellung und Origina-
lität aus. Eine von der ÖMG eingesetzte Jury wählte sechs besonders herausra-
gende Arbeiten aus, welche im Rahmen des Fortbildungstags für Lehrerinnen und
Lehrer an der Universität Wien (25. April 2014) gewürdigt wurden:

• Johanna Einsiedler (Mary Ward-Privatgymnasium und ORG St. Pölten):
Spieltheorie. Bimatrixspiele und deren praktische Anwendung (Betreuerin:
Mag. Maria Burmetler)
• Tobias Kietreiber (BG und BRG Tulln): Riemannsche Zetafunktion (Be-

treuerin: Mag. Anita Dorfmayr)
• Richard Löscher (BRG Petersgasse Graz): Der Steinerkreis – Ein faszinie-

rendes Werkzeug der Projektiven Geometrie (Betreuer: Mag. David Stuhl-
pfarrer)
• Anna Niggas (GRg3 Wien): Regelflächen – theoretisch, exemplarisch, visu-

ell (Betreuer: Dr. Gerhard Pillwein)
• Victoria Tiki (BG Horn): Der Zufall in der Matheamtik (Betreuerin: Mag.

Christa Dell’mour)
• Kerstin Wolf (BG Rechte Kremszeile): Modellierung von Wachstumspro-

zessen. Schimmelpilz als abstoßendes Beispiel (Betreuer: MMag. Matthias
Kittel)

Von links nach rechts: V. Tiki, R. Löscher, C. Dell’mour, K. Wolf, D. Stuhlpfarrer,
T. Kietreiber, M. Kittl (verdeckt).
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Die Preisträgerinnen und Preisträger waren eingeladen, ihre Arbeiten in einem
kurzen Referat vorzustellen. Sie verstanden es hervorragend, in der sehr knapp be-
messenen Zeit ihre Arbeit in übersichtlicher und komprimierter Weise zu präsen-
tieren und bewiesen damit auch ihre Vortragskompetenz.
Die Preisverleihung (Urkunde, Buchpreis, einjährige Mitgliedschaft bei der
ÖMG) erfolgte durch Hans Humenberger und Harald Rindler. Wir gratulieren
allen Teilnehmerinnen und Teilnehmen ganz herzlich zu diesen hervorragenden
Leistungen.
Die ÖMG wird den Preis in den kommenden Jahren weiter regelmäßig ausschrei-
ben, jedoch ab dem Schuljahr 2014/15 für die dann eingeführten vorwissenschaft-
lichen Arbeiten.

Michael Oberguggenberger (Univ. Innsbruck, Vorsitzender der ÖMG) und Micha-
el Drmota (TU Wien, Vorsitzender der Schülerpreisjury)

Von links nach rechts: A. Dorfmayr, Dekan H. Rindler, A. Niggas, M. Burmetler,
J. Einsiedler, G. Pillwein, H. Humenberger.

67



Erratum

In dem Artikel Die Exponentialfunktion als dynamisches System von S. Götz und
F. Hofbauer, IMN 223 (2013), 21–35, sind die Beschriftungen innerhalb der Figu-
ren 3, 7 und 8 von der Druckerei leider nicht richtig wiedergegeben worden. Sie
sind daher unten noch einmal (in einem anderen Verfahren) abgebildet.

Die Redaktion

Abbildung 3: Die Graphen von p = p(a)
und a = a(p).

Abbildung 7: Nochmals: die Graphen
von p = p(a) und a = a(p).

Abbildung 8: p = p(a) und a = a(p)
auf dem maximalen Definitionsbe-
reich.
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