Zusammenfassung

Das Studium der Elliptischen Kurven, d.h. der algebraischen Kurven vom Geschlecht 1, schließt in natürlicher Weise an die in der Schule seit jeher vielbetriebenen Untersuchungen von Geraden und Kegelschnitten an, welche zu den Kurven vom Geschlecht 0 gehören. So wie für diese existieren auch für Elliptische Kurven eine Fülle von Anwendungen, z.B. bei der Auflösung Diophantischer Gleichungen, bei Primzahltests und Faktorisierungsverfahren für ganze Zahlen, und neuerdings auch in der Kryptographie im Zusammenhang mit wichtigen asymmetrischen Chiffrierverfahren. In der Arbeit wird versucht, an Hand einiger konkreter Beispiele einen Einblick in diese Möglichkeiten zu geben.

„It is possible to write endlessly on elliptic curves...
This is not a threat."

Serge Lang (in [4])

1. Was ist eine elliptische Kurve?

Zum Glück ist aber ohne allzu große Einschränkung der Allgemeinheit für unsere Zwecke eine sehr viel einfachere Definition einer elliptischen Kurve über einem Körper K bereits ausreichend, nämlich als die Menge aller Lösungen $(x,y) \in K \times K$ einer Gleichung der Form

$$y^2 = x^3 + ax + b \quad (a, b \in K)$$

ergänzt um den sog. „unendlich fernen“ Punkt O. Dabei setzt man noch voraus, dass diese Gleichung überhaupt eine Lösung besitzt, d.h., dass es in obiger Sprechweise „mindestens einen K-rationalen Punkt gibt“, und das rechtsstehende Polynom $f(x) = x^3 + ax + b$ keine mehrfachen Nullstellen besitzt, was man auch so ausdrücken kann, dass $f(x)$ und $f'(x)$ niemals gleichzeitig verschwinden. Die letztere Bedingung gilt dabei sogar verschärft nicht nur in K, sondern sogar im sog. algebraischen \overline{K} von K. (Der algebraischen Abschluss \overline{K} von K ist dabei in gewisser Hinsicht der „kleinste“ Erweiterungskörper von K, in dem jedes Polynom von $K[x]$ vollständig in Linearfaktoren zerfällt. Er spielt somit für K dieselbe Rolle, wie der Körper \mathbb{C} der komplexen Zahlen für den Körper \mathbb{R} der reellen Zahlen.)
Um die Bedeutung dieser auf den ersten Blick seltsam anmutenden Bedingungen für eine elliptische Kurve zu erhellcn, möchte ich doch zumindestens versuchen den Zusammenhang zu obiger allgemeiner Definition herzustellen, da hierbei auch sonst einige wichtige Aspekte ins Spiel kommen.

Zunächst einmal bezog sich unsere einfachere Definition auf eine elliptische Kurve in sog. „affiner Darstellung“, welche der üblichen Darstellung von implizit gegebenen Funktionen entspricht, die uns von den Kegelschnitten her schon vertraut ist. Um auf die entsprechende projektive Darstellung, welche hier die Form

\[Y^2Z = X^3 + aXZ^2 + BZ^3 \ (a,b \in K) \]

hat, zu kommen, müssen wir nun in der affinen Gleichung die Substitution \(x = X/Z \) und \(y = Y/Z \) vornehmen und sie anschließend mit \(Z^3 \) multiplizieren. (Zurück zur affinen Darstellung geht’s dann einfacher indem man einfach \(x = X, \ y = Y, \ Z = 1 \) substituiert.)

Auch in der projektiven Darstellung werden wieder alle Lösungen \((X,Y,Z) \in K^3 \) dieser Gleichung betrachtet, die triviale Lösung \((0,0,0)\) jedoch explizit ausgenommen. Dabei werden aber zwei Punkte \((X_1,Y_1,Z_1)\) und \((X_2,Y_2,Z_2)\) als gleich angesehen, falls es ein \(t \in K \setminus \{0\} \) gibt, sodass gilt \((X_1,Y_1,Z_1) = t(X_2,Y_2,Z_2) \). Nach dieser Identifikation entsprechen sich die Punkte der affinen und projektiven Darstellung der elliptischen Kurve \(E \) über \(K \) umkehrbar eindeutig bei der bijektiven Zuordnung \((x,y) \leftrightarrow (x,y,1) \ (x,y \in K) \) ergänzt durch \(O \leftrightarrow (0,1,0) \).

Da ferner in der projektiven Darstellung die Elliptische Kurve aus den Nullstellen eines Polynoms \(F(X,Y,Z) \in K[X,Y,Z] \), nämlich hier

\[F(X,Y,Z) = Y^2Z - X^3 - aXZ^2 - BZ^3 \]

erhalten wird und wir bei der Wahl der Koordinaten gemäß obiger Identifikation gewissermaßen nur einen „Freiheitsgrad“ mehr haben, liegt tatsächlich eine sog. projektive Varietät der Dimension 1 vor. Zur Berechnung des Geschlechts \(g \) einer projektiven Varietät, d.h. der Menge der Nullstellen eines Polynoms \(F(X,Y,Z) \in K[X,Y,Z] \), bedient man sich am besten der Formel von Plücker, nämlich

\[g = \frac{(n-1)(n-2)}{2} - s \]

wobei hier \(n \) den Grad von \(F(X,Y,Z) \) und \(s \) die Anzahl der Singularitäten von \(F(X,Y,Z) \) bezeichnet, d.h. diejenigen Punkte der Kurve, in denen sämtliche partiellen Ableitungen verschwinden.

Diese Formel für das Geschlecht gilt in dieser Form jedoch nur, wenn die Kurve keine anderen Singularitäten als gewöhnliche Doppelpunkte und Spitzen hat. Singularitäten mit einer Vielfachheit \(r>2 \), in denen es anschaulich gesprochen \(r \) Tangenten gibt, muss man in obiger Formel als \(r(r-1)/2 \) Doppelpunkte „in Rechnung stellen“. Nachfolgend sind einige einfache Beispiele von algebraischen Kurven mit und ohne Singularitäten zusammengestellt.
Rein rechnerisch sind Singularitäten die Lösungen des polynomialen Gleichungssystems
\[F(X, Y, Z) = F_x(X, Y, Z) = F_y(X, Y, Z) = F_z(X, Y, Z) = 0 \]
im algebraischen Abschluß \(\bar{K} \) von K.

Versucht man damit konkret die Singularitäten für \(F(X, Y, Z) = Y^2Z - X^3 - aXZ^2 - BZ^3 \) zu berechnen, so kommt man auf die Gleichungen
\[
Y^2Z - X^3 - aXZ^2 - BZ^3 = 0 \\
-3X^2 - aZ^2 = 0 \\
2YZ^2 = 0 \\
Y^2 - 2aX - 3BZ^2 = 0
\]

Wegen der letzten Gleichung sieht man sofort, dass \((0,1,0)\) niemals singulär ist. Für einen Körper \(K \) mit \(\text{char}(K) \neq 2 \), in dem also \(2y = 0 \) nur für \(y = 0 \) gilt, ist aber auch kein Punkt \((x,y,1)\) singulär, da sonst aus obigen Gleichungen \(f(x) = f'(x) = 0 \) für das Polynom \(f(x) = x^3 + ax + b \) in der affinen Darstellung folgen würde, d.h. \(x \) wäre entgegen der Vorausschatzung eine doppelte Nullstelle von \(f(x) \). Mit \(n = 3 \) und \(s = 0 \) erhält man somit aus obiger Formel für das Geschlecht \(g \) tatsächlich den Wert 1.

Man kann nun zeigen, dass außer für Körper \(K \) mit \(\text{char}(K) = 2 \) oder \(\text{char}(K) = 3 \) (für die also gilt \(1+1 = 0 \) bzw. \(1+1+1 = 0 \)), auch umgekehrter jede elliptische Kurve im Sinne der allgemeinen Definition durch eine sog. „birationale Transformation“ – dies ist eine umkehrbare Koordinatentransformation, bei der die die Transformationsgleichungen durch rationale Funktionen über \(K \) beschrieben werden – auf die von uns angegebene Form gebracht werden kann, welche auch (kurze) Weierstraßform genannt wird.

Für die zwei genannten Ausnahmefälle \(\text{char}(K) = 2,3 \) sind die Dinge nur leicht komplizierter: Ist \(\text{char}(K) = 3 \), so gilt wieder \(y^2 = f(x) \), wobei jetzt das rechtsstehende Polynom \(f(x) = K[x] \) die etwas allgemeinere Form \(f(x) = x^3 + ax^2 + bx + c \) hat, während im Fall \(\text{char}(K) = 2 \) die Gleichung der elliptischen Kurve eine der beiden Formen
\[
\begin{align*}
y^2 + xy &= x^3 + ax + b \\
y^2 + cy &= x^3 + ax + b
\end{align*}
\]
gebracht werden kann, wobei der erstgenannte Typ für Zwecke der Kryptographie große Bedeutung hat. (Der zweite Typ führt auf sog. supersinguläre Kurven, welche in Hinblick auf gewisse Kryptoattacken eine deutlich bessere Angriffsfläche bieten und daher in diesem Zusammenhang tunlichst vermieden werden sollten!)

Wie inzwischen klar geworden sein dürfte, kann man von einer beliebigen algebraischen Kurve oft gar nicht so einfach sagen, ob es sich dabei um eine elliptische Kurve handelt oder nicht. Als erstes wird man dazu ihr Geschlecht bestimmen. Von den obigen 6 Kurven haben die ersten fünf den Grad 3 und daher nach der Plücker'schen Formel genau dann das Geschlecht 1, wenn sie nichtsingulär, d.h. frei von Singularitäten sind. Dies trifft, wie man sofort nachrechnet, für die Kurven
\[
y^2 = x^3 - 4x, \quad y^2 = x^3 - 3x + 3 \quad \text{und} \quad x^3 + y^3 = 1
\]
zu, welche daher für \(K = \mathbb{R} \) tatsächlich elliptische Kurven sind, da diese Gleichungen dann offensichtlich auch Lösungen in \(K \) besitzen. Insbesondere müßte sich also die letzte Kurve, die noch nicht in Weierstraßform gegeben ist, nach dem oben Gesagten durch eine birationale Transformation auf eine solche bringen lassen. Tatsächlich ist dies der Fall, wie die folgende Rechnung in Derive 5 beweist,
die Kurven $x^3 + y^3 = 1$ und $y^3 = x^3 - 432$ sind "birational äquivalent".

Ist am Ende auch die letzte Kurve $(x^2 + y^2)^3 + 3x^2y = y^3$, das berühmte "3-blättrige Kardische Kleeblatt" eine elliptische Kurve? Dazu müssen wir die Vielfachheit der einzigen Singularität im Punkt $(0,0)$ bestimmen, welche die Mindestvielfachheit ist, mit der eine beliebige Gerade $y=kx$ durch $(0,0)$ die Kurve im Punkt $(0,0)$ schneidet. Wegen

$$h(x, y) = (x^2 + y^2) + 3x^2 \cdot y - y$$
$$h(x, k \cdot x) = x^2 (k^2 + 1) + k \cdot x^3 (3 - k)$$

beträgt diese offenbar 3, d.h., es gibt drei Tangenten in $(0,0)$, nämlich mit den Steigungen $k=0$ und $k = \pm \sqrt{3}$, was man hier auch noch "mit freiem Auge" hätte sehen können. Diese Singularität ist daher so wie 3 = 3*2/2 gewöhnliche Doppelpunkte zu bewerten. Einsetzen der Werte $n=4$ und $s=3$ in die Plückerische Formel ergibt dann, dass die vorliegende Kurve Geschlecht 0 hat, also keine elliptische Kurve ist. Insbesondere kann man daraus folgern, dass sie so wie alle Kurven vom Geschlecht 0, zu denen ja auch die Geraden und Kegelschnitte zählen, eine parametrische Darstellung mit Hilfe von rationalen Funktionen besitzen muss. Es ist recht lehrreich, wie man auf eine solche kommen kann: Man betrachtet dazu wieder die Geraden $y=kx$ durch $(0,0)$ und bestimmt einfach den eindeutigen Schnittpunkt $(0,0)$ mit der Kurve, der sich zu

$$x = \frac{k(k^2 - 3)}{(k^2 + 1)^2}, \quad y = \frac{k^2(k^2 - 3)}{(k^2 + 1)^2}$$

ergibt, was damit die Parameterdarstellung angibt. Insbesondere sieht man so sofort, dass es unendlich viele rationale Punkte auf der Kurve gibt.

Allgemeiner kann man mit der gleichen Beweisidee für Kurven vom Geschlecht 0 über \mathbb{Q} zeigen (und der Leser möge sich dies z.B. für Kreise $x^2 + y^2 = r^2$ mit $r \in \mathbb{Q}$ selbst überlegen!), dass auf ihnen entweder keine oder unendliche viele rationale Punkte liegen, d.h. die Frage nach den rationalen Punkten ist für sie in gewisser Weise trivial. Für Kurven vom Geschlecht $g \geq 2$ über \mathbb{Q} konnte dagegen Faltings 1983 eine alte Vermutung von Mordell zeigen, dass nämlich auf ihnen stets höchstens endlich viele rationale Punkte liegen. Es bleiben also noch die elliptischen Kurven über \mathbb{Q}, für welche genau diese Frage nach der Anzahl der rationalen Punkte zu den knifflichsten überhaupt gehört, über die schon ganze Bücher geschrieben wurden (siehe z.B. [8]). Wir werden in Kürze noch einmal darauf zurückkommen.

2. Ein altes Problem und neue Einsichten

Ein Problem, welches schon von den alten Griechen studiert wurde und welches, wie wir gleich sehen werden, eng mit gewissen elliptischen Kurven zusammenhängt, ist die Bestimmung der sog. kongruenten Zahlen. Eine quadratfreie ganze Zahl $d \not= 0$ heißt dabei kongruent, wenn sie sich als Flächeninhalt eines rechtwinkligen Dreiecks mit rationalen Seiten a,b,c darstellen läßt. (a,b bezeichne dabei wie üblich die Katheten und c die Hypotenuse des Dreiecks.) Wie man sofort sieht, ist daher z.B. $d=6$ eine kongruente Zahl, denn sie ist der Flächeninhalt des klassischen rechtwinkligen Dreiecks mit den (hier sogar ganzzahligern!) Seiten 3,4 und 5. Etwas weniger trivial ist bereits die Auffindung eines solchen Dreiecks mit Flächeninhalt 5. (Wir werden ein solches weiter unten berechnen, aber der Leser möge in der Zwischenzeit sich selbst daran versuchen!) Für gewisse Zahlen d gibt
es sogar überhaupt kein derartiges Dreieck, d.h. sie sind nicht kongruent. So konnte dies z.B. schon Fermat um 1650 für d=1 zeigen, indem er die diophantische Gleichung \(x^4 + y^4 = z^2 \) untersuchte. Auch für \(d=2 \) und \(d=3 \) existieren keine derartigen Lösungen.

Wie nun folgende Rechnung mit Derive zeigt, liefert jedes rechtwinkelige Dreieck mit den Seiten \(a,b,c \) sofort eine rationale Lösung \((x,y) \) mit \(y \neq 0 \) der elliptischen Kurve \(y^2 = x^3 - d^2 x \):

\[
\begin{align*}
 x &= \frac{a \cdot (a - \sqrt{a^2 + b^2})}{2}, \\
 y &= \frac{a \cdot (\sqrt{a^2 + b^2} - a)}{2}, \\
 d &= \frac{a \cdot b}{2} \\
 y^2 - x^3 + d^2 x &= 0
\end{align*}
\]

Es gilt aber auch die Umkehrung, d.h. ist \((x,y)\) mit \(y \neq 0 \) ein rationaler Punkt der elliptischen Kurve \(y^2 = x^3 - d^2 x \), so erhält man mit nachfolgenden Definitionen ein rechtwinkeliges Dreieck mit rationalen Seiten \(a,b,c \) und Flächeninhalt \(d \):

\[
\begin{align*}
 a &= \left| \frac{x^2 - d^2}{y} \right|, \\
 b &= \left| \frac{2 \cdot x \cdot d}{y} \right|, \\
 c &= \left| \frac{x^2 + d^2}{y} \right|, \\
 y &= \pm \sqrt{x^3 - d^2 x}, \\
 a \cdot b &= 2 \cdot |d|
\end{align*}
\]

Was aber ist durch diese Transformation auf ein Problem über elliptische Kurven gewonnen? Wie wir gleich sehen werden eine ganze Menge! In erster Linie liegt dies an der wunderbaren Eigenschaft der elliptischen Kurven, dass man auf der Menge ihrer Punkte eine Addition einführen kann, welche sie zu einer abelschen Gruppe werden läßt. Die Summe \(P+Q \) zweier Punkte \(P \) und \(Q \) einer elliptischen Kurven über \(R \) erhält man dabei im allgemeinen Fall so, dass man die Sekante durch \(P \) und \(Q \) legt (bzw. die Tangente an \(P \), falls \(P \) und \(Q \) zusammenfallen!) und den Schnittpunkt \(P \cdot Q \) an der x-Achse spiegelt, so wie unten dargestellt.
Sind \(P = (x_1, y_1) \) und \(Q = (x_2, y_2) \) die Koordinatendarstellungen der beiden Punkte, so ergeben sich zunächst die Steigung \(k \) der Sekante (bzw. Tangente für \(P = Q \)) zu

\[
k = \begin{cases}
\frac{y_2 - y_1}{x_2 - x_1}, & \text{falls } x_1 \neq x_2 \\
\frac{3x_1^2 + a}{2y_1}, & \text{falls } x_1 = x_2, y_1 \neq 0
\end{cases}
\]

und daraus durch Einsetzen von \(y = k(x - x_1) + y_1 \) in die Gleichung \(y^2 = x^3 + ax + b \) der elliptischen Kurve nach leichter Rechnung die Gleichungen

\[x_3 = k^2 - x_1 - x_2, \quad y_3 = -y_1 + k(x_1 - x_3)\]

für die Koordinaten des Punkts \(P + Q = (x_3, y_3) \).

Allerdings haben wir bisher den Fall noch nicht berücksichtigt, dass \(x_1 = x_2 \), aber \(y_1 \neq y_2 \). In diesem Fall gilt dann \(y_2 = -y_1 \), d.h. \(P \) und \(Q \) liegen spiegelbildlich zur \(x \)-Achse und wir definieren hier \(P + Q = 0 \). Schließlich soll noch gelten \(P + 0 = 0 + P = P \), d.h. \(0 \) spielt die Rolle des neutralen Elements für unsere Addition.

Diese Punktaddition kann man nun in der genau gleichen Weise, aber eben dann ohne die geometrische Interpretation, auch für einen beliebigen Körper \(K \) durch obige Gleichungen definieren und erhält so, wie man beweisen kann, in jedem Falle eine abelsche Gruppe, welche wir im folgenden mit \(E(K) \) (oder auch nur \(E \)) bezeichnen.

Was kann man aus algebraischer Sicht über die Struktur dieser abelschen Gruppe aussagen? Betrachten wir zunächst den wichtigen Spezialfall \(K = \mathbb{Q} \). Ein klassisches Resultat in dieser Richtung ist dann der Satz von Mordell aus dem Jahre 1923, welcher aussagt, dass \(E(\mathbb{Q}) \) endlich erzeugt ist, d.h. es gibt eine endliche Teilmenge \(B = \{P_1, \ldots, P_n\} \) von \(E(\mathbb{Q}) \), welche auch Basis von \(E(\mathbb{Q}) \) genannt wird, sodass jeder Punkt \(P \in E(\mathbb{Q}) \) eine eindeutige Summendarstellung

\[P = k_1P_1 + \ldots + k_nP_n \quad (0 \leq k_i < \text{ord}(P_i))\]

besitzt. Hierbei ist für einen Punkt \(R \) seine Ordnung \(\text{ord}(R) \) definiert als die kleinste unter allen ganzen Zahlen \(k > 0 \) mit \(kR = 0 \), falls so ein \(k \) überhaupt existiert, ansonsten wird \(\text{ord}(R) = \infty \) gesetzt. Die Anzahl \(r \geq 0 \) aller Basispunkte von unendlicher Ordnung ist übrigens eine wichtige Invariante der Gruppe \(E(\mathbb{Q}) \), welche in gewisser Weise ihre „Größe“ misst und als ihr Rang bezeichnet wird. Obwohl diese Kennzahl für konkrete elliptische Kurven über \(\mathbb{Q} \) in der Regel ziemlich klein und häufig sogar 0 ist, wird doch vermutet, dass sie insgesamt gesehen unbeschränkt groß sein kann.

Sehr weitgehende Aussagen kann man auch über diese sog. Torsionsgruppe \(E(\mathbb{Q})_{\text{tors}} \) machen, welche aus allen Punkten \(P \) besteht, d.h. für welche gilt \(\text{ord}(P) < \infty \) und die auch Torsionspunkte genannt werden. Z.B. gilt nach einem bekannten Satz von Nagell-Lutz aus dem Jahr 1937, dass aus \((x, y) \in E(\mathbb{Q})_{\text{tors}}\) stets \(x, y \in \mathbb{Z} \), sowie \(y = 0 \) oder \(y^2 | 4a^3 + 27b^2 \) folgt, was die praktische Berechnung der Torsionspunkte sehr einfach macht. Es war ferner auch schon lange bekannt, dass man höchstens zwei Torsionspunkte braucht, um \(E(\mathbb{Q})_{\text{tors}} \) zu erzeugen. 1977 gelang es B. Mazur darüber hinaus in einem tiefliegenden Satz eine genaue Liste aller 15 möglichen Fälle für die Struktur von \(E(\mathbb{Q})_{\text{tors}} \) angeben, aus welchem insbe-
sondern folgt, dass es höchstens 16 Torsionspunkte geben kann und diese nur die Ordnungen 1, 2, ..., 10 und 12 haben können.

Speziell für die elliptischen Kurven \(y^2 = x^3 - d^2 x \), welche wir oben betrachtet hatten, stellt man übrigens unschwer fest, dass sie genau die vier Torsionspunkte \(O, (0,0), (d,0), (-d,0) \) besitzt. Dies sind andererseits genau jene Punkte, denen wir bei obiger Zuordnung keine rationale Lösung des Gleichungssystems
\[
a^2 + b^2 = c^2 \land ab = 2d \quad (*)
\]
zuordnen können. Jeder weitere rationale Punkt von \(E(Q) \) liegt aber dann nicht in \(E(Q)_{tors} \), womit er zusammen mit seinen Vielfachen automatisch unendliche viele rationale Punkte von \(E(Q) \) und damit unendliche viele rationale Lösungen von (*) „produziert“. Dies können wir aber nach obigem auch kürzer so ausdrücken, dass (*) genau dann in rationalen Zahlen lösbar ist, wenn die zugehörige elliptische Kurve \(E(Q) \) mindestens den Rang 1 hat.

Es ist nun interessant festzustellen, dass die Überprüfung dieser Bedingung, welche im allgemeinen doch einige Schwierigkeiten macht, ganz einfach wäre, würde eine berühmte Vermutung von Birch und Swinnerton-Dyer gelten, auf deren Beweis das Clay Mathematics Institute immerhin ein Preisgeld von $ 1,000,000 ausgesetzt hat, was ihre Wichtigkeit doch eindrucksvoll unterstreicht. Leider erfordert ihre genaue Formulierung einiges an Voraussetzungen aus der Funktionentheorie, weshalb ich mich hier wiederum mit nachfolgenden Andeutungen begnügen muss.

Man betrachtet dazu die jeder elliptischen Kurve \(E \) über \(Q \) in „kanonischer Weise“ zugeordnete L-Reihe \(L(E,s) \), von der man allgemein zeigen kann, dass sie für \(s > 3/2 \) konvergiert. Betrachtet man dazu ihre sog. analytische Fortsetzung auf die ganze Gaußsche Zahlenebene, deren Existenz hier beweisbar ist, so besagt die angesprochene Vermutung, dass der Rang \(r \) von \(E \) genau mit der Vielfachheit der Nullstelle von \(L(E,s) \) für \(s = 1 \) übereinstimmt. Unter der Annahme der Richtigkeit dieser Vermutung wäre also (*) in rationalen Zahlen genau dann lösbar, wenn für die zugeordnete elliptische Kurve \(E \) gilt \(L(E,1) = 0 \). Leider konnte bislang allgemein nur die Notwendigkeit dieser Bedingung für die Lösbarkeit gezeigt werden (Coates and Wiles, 1977). Was die Umkehrung betrifft, konnten aber Gross und Zagier 1984 immerhin zeigen, dass sie gilt, falls \(L(E,s) \) für \(s = 1 \) eine einfache Nullstelle besitzt.

Wir haben bisher nur den klassischen Fall \(K = Q \) betrachtet, speziell in Hinblick auf Anwendungen in der Kryptographie aber noch sehr wichtig ist der Fall \(K = F_q \), d.h. wo \(K \) ein endlicher Körper mit \(q \) Elementen ist, wobei \(q = p^m \) eine Primzahlpotenz sein muss. Auch hier gelten nun ähnliche Sätze für die elliptische Kurve \(E(F_q) \) wie vorher für \(K = Q \), aber die Tatsache, dass sie endlich ist, macht doch einiges einfacher. So kann man relativ leicht zeigen, dass \(E(F_q) \) stets entweder zyklisch ist oder eine höchstens zweielementige Basis \(\{A,B\} \) besitzt. In letzterem Fall dürfen wir auch noch \(\text{ord}(A) = \text{ord}(B) \), sowie \(\text{ord}(A) = 1 \) voraussetzen. Sehr wichtig ist auch noch der Satz von Hasse, welcher aussagt, dass \# \(E(F_q) \) nicht allzu sehr von \(q + 1 \) nach oben oder unten abweicht, genauer um höchstens \(2 \sqrt{q} \).

Nach soviel „Theorie“ wollen wir aber nun endlich zum „praktischen Teil“ übergehen und einige Beispiele rechnen. Zu diesem Zweck habe ich nachfolgend einige nützliche Derive-Routinen angegeben, wobei ich mich der Einfachheit halber auf die für uns wichtigsten Fälle \(K = Q \) bzw. \(K = F_p \) für eine Primzahl \(p \) beschränkt habe. (Nur in letzterem Fall ist dabei der Eingabeparameter \(p \) in nachfolgenden Routinen explizit anzugeben!)

Die erste Routine überprüft, ob die vorgegebene elliptische Kurve \(y^2 = x^3 + ax + b \) über dem betrachteten Körper \(K \) wirklich nicht singulär ist, d.h. ob \(f(x) = x^3 + ax + b \) und \(f'(x) = 3x^2 + b \)
keine gemeinsame Nullstelle im algebraischen Abschluß \overline{K} haben. Es wird dazu die sog. Diskriminante $4a^3 + 27b^2$ des Polynoms $f(x)$ verwendet, welche uns bereits im Zusammenhang mit dem Satz von Nagell-Lutz begegnet ist.

\[
\text{nonsingular}(a, b, p := 0) := \text{SOLVE}(\text{MOD}(4 \cdot a^3 + 27 \cdot b^2, p) \neq 0) \\
\text{nonsingular}(1, 1, 5) = \text{true}
\]

Wer sich darüber hinaus für den Ausdruck $4a^3 + 27b^2$ interessiert, dem sei noch verraten, dass er sich rein rechnerisch auch als sog. Resultante von $f(x)$ und $f'(x)$

\[
\begin{vmatrix}
1 & 0 & a & b & 0 \\
0 & 1 & 0 & a & b \\
3 & 0 & a & 0 & 0 \\
0 & 3 & 0 & a & 0 \\
0 & 0 & 3 & 0 & a
\end{vmatrix} = 4 \cdot a^3 + 27 \cdot b^2
\]

ergibt, was nichts anderes bedeutet, als dass er genau dann verschwindet, wenn die Polynome $f(x), xf(x), f'(x), xf'(x), x^2 f(x)$ in $K[x]$, welchen in obiger Matrix genau die Zeilenvektoren entsprechen, über K linear abhängig sind. Genau in diesem Fall hat aber $kgV(f(x), f'(x))$ einen kleineren Grad als $f(x)f'(x)$, d.h. $f(x)$ und $f'(x)$ sind dann in $K[x]$ nicht teilerfremd.

Nun zur Abwechslung ein etwas aufwändigeres Programm, das zur Berechnung von Punkten auf einer elliptischen Kurve dient. Im Falle $K=\mathbb{Q}$, d.h. für $p=0$, ist dabei h unbedingt miteinzugeben und bedeutet dann die sog. max. „Höhe“, d.h. ein Suchlimit für die Beträge von Zählern und Nennern der jeweiligen x-Koordinaten. Wird dagegen mod p gerechnet, so bedeutet h einfach eine obere Schranke für die Anzahl der zu suchenden Punkte. Hier sind insbesondere die Werte $h=1$ und $h=\infty$ sinnvoll, wobei dann nur ein Punkt bzw. alle Punkte der Kurve ausgewegen werden.

\[
\text{points}(a, b, p := 0, h := w, u_:= 0, v_, w_ := 0) := \\
\text{if } p = 0 \\
\quad u_ := 1 \\
\quad \text{loop } u, w_ := 0 \\
\quad \text{if } \text{RATIONAL}(\sqrt((u^2v - 2)^3 + a \cdot (u^2v - 2) + b)) \\
\quad \quad w_ := \text{ADJOIN}(\{u^2v - 2, a \cdot (u^2v - 2) + b\}, w_)
\quad \text{if } \text{RATIONAL}(\sqrt((-u^2v - 2)^3 - a \cdot (u^2v - 2) + b)) \\
\quad \quad w_ := \text{ADJOIN}(\{-u^2v - 2, a \cdot (u^2v - 2) + b\}, w_)
\quad \text{if } u_ := 1 \text{ h exit} \\
\quad \text{if } u_ > h \\
\quad \text{return } w_ \\
\text{if } p > 0 \\
\quad b := \text{NUMBER}(\text{SQUARE_ROOT}(u^3 + a \cdot u + b, p)) \\
\quad \text{if } \text{NUMBER}(\text{SQUARE_ROOT}(u^3 + a \cdot u + b, p)) \\
\quad \quad h := 1 \\
\quad \text{if } p > 2 \text{ and } u > 0 \text{ and } h > 0 \\
\quad \quad w_ := \text{ADJOIN}(\text{ADJOIN}(\text{ADJOIN}(\text{ADJOIN}(\text{ADJOIN}(\{u_+, p - u_+, w_\}, h := 1) \\
\quad \text{return } w_ \\
\text{if } u_ = p \\
\text{return } \text{ADJOIN}(\{0, 0\}, w_)
\]

Wie die folgende Rechnung zeigt, existieren für $d=5$ tatsächlich rationale Punkte (x, y) mit $y \neq 0$ auf der elliptischen Kurve $y^2 = x^3 - 25x$. Bis zur Höhe $h=1000$ sind dies:

\[
\text{points}(-25, 0, 0, 100, 100) = \{(-5, 0), (-4, 16), \left[\frac{-5}{9}, \frac{100}{27} \right], (0, 0), (5, 0), \left[\frac{25}{4}, \frac{75}{8} \right], (45, 1300)\}
\]

Um auf die zugehörigen Dreiecke zu kommen, verwenden wir die nachfolgende Routine:
\[
\text{triangle}(d, x, y) := \left[\begin{array}{c}
\frac{2 \cdot x - d^2}{y} \\
\frac{2 \cdot x}{y} \\
\frac{2 \cdot y}{|y|}
\end{array} \right]
\]

Damit erhält man z.B. für \(d=5\) und die oben berechneten Punkte mit \(y \neq 0\) die folgenden zugeordneten Dreiecke:

\[
\text{TABLE}(\text{triangle}(5, u_1, u_2), u, \text{SELECT}(u \neq 0, u, \text{points}(-25, 0, 0, 100)))
\]

\[
\begin{bmatrix}
[-4, \pm 6] & \frac{3}{2}, \frac{20}{3}, \frac{26}{3} \\
[-9, \pm 100] & \frac{20}{3}, \frac{409}{2}, \frac{108}{2} \\
[-4, \pm 75] & \frac{20}{3}, \frac{325}{3}, \frac{24}{3} \\
[45, \pm 300] & \frac{20}{3}, \frac{1227}{4}, \frac{4}{4}
\end{bmatrix}
\]

Wie können wir allgemein für ein quadratfreies \(d\) feststellen, ob es kongruent ist oder nicht? Nach dem oben Gesagten, sollte uns bei der Beantwortung dieser Frage der Wert \(L(E,1)\) weiterhelfen, welcher sich hier darstellen läßt in der Form (s. [10])

\[L(E,1) = \frac{a(n - 2m)^2}{\sqrt{d}} \cdot C,\]

wobei die auftretenden Konstanten die Bedeutung bzw. den Wert

\[C = 0.163878597 \ldots, \quad a = 2 - (d \mod 2),\]

\[n = \# \{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + 2ay^2 + 8z^2 = d \div a, \quad m = \# \{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + 2ay^2 + 32z^2 = d \div a\}\]

haben. Insbesondere ist also \(L(E,1) = 0\), d.h. \(d\) dann noch obigem sicher keine kongruente Zahl, falls \(n \neq 2m\) ist. Gilt andererseits \(n=2m\), d.h. \(L(E,1) = 0\), so ist \(d\) mit großer (wenig auch nicht mit letzter!) Sicherheit kongruent, da sonst daraus folgen würde, dass die Vermutung von Birch und Swinnerton-Dyer schlicht und einfach falsch ist!

Natürlich lassen wir es uns auch hier wieder nicht nehmen, für die Beantwortung der alles entscheidenden Frage, ob nämlich \(n=2m\) für das vorgegebene quadratfreie \(d\) gilt oder nicht, eine Derive-Routine zusammen mit einem kleinen Beispiel – die Bestimmung aller quadratfreien \(d<20\), welche kongruent sind – bereitzustellen.

\text{solveable}(d, a, n) :=
\begin{align*}
\text{Prog} \\
a_+ := 2 - \text{MOD}(d, 2) \\
d := a_+ \\
u_+ := \text{REST} \left(\text{SORT} \left(\{0, 1, \ldots, \text{FLOOR}(\sqrt{d})\} \cdot \{0, 1, \ldots, \text{FLOOR}(\sqrt{(d/(2 \cdot a_+))})\} \right) \right) \\
\text{Loop} \\
\text{if } u_+ = [] \\
\text{RETURN} \text{SOLVE}(2 \cdot n = n) \\
x_+ := u_+ + 1 \\
y_+ := u_+ + 2 \\
v_+ := x_+^2 + 2 \cdot a_+ \cdot y_+^2 \\
z_+ := \sqrt{(d - u_+^2) / 2} \\
\text{if } \text{INTEGER}(z_+) \\
\text{Prog} \\
\text{n}_+ := (2 - \theta \cdot x_+) \cdot (2 - \theta \cdot y_+) \cdot (2 - \theta \cdot z_+) \\
\text{if } \text{EVEN}(z_+) \\
\text{m}_+ := (2 - \theta \cdot x_+) \cdot (2 - \theta \cdot y_+) \cdot (2 - \theta \cdot z_+) \\
u_- := \text{REST}(u_-) \\
\end{align*}
TABLE(solvable?(d), d. SELECT(SQUAREFREE(n_), n_, 1, 20)):

\[
\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 5 & 6 & 7 & 10 & 11 & 13 & 14 & 15 & 17 & 19 \\
false & false & false & true & true & true & false & false & true & true & true & false & false
\end{array}
\]

Wie daraus unmittelbar folgt, hat für die Zahlen d=1,2,3,10,11,17,19 die elliptische Kurve \(y^2 = x^3 - d^2 x \) den Rang 0, d.h. \(E(\mathbb{Q}) \) ist endlich! In den anderen Fällen, wo also der Rang \(r > 0 \) ist, wäre noch die Frage nach seinem tatsächlichen Wert ausständig, die im allgemeinen jedoch alles andere als einfach zu beantworten ist. Als Faustregel kann man nehmen, dass in diesen Fällen der Rang sehr klein ist, meist sogar nur 1. Tatsächlich ist der Rang für kongruente \(d=100 \) nur in 3 Fällen größer als 1, nämlich 2, und zwar für \(d=34,41 \) und 65.

In jedem Fall wird dazu eine Routine für die oben eingeführte Punkttaddition benötigt, welche nachfolgend gleich für den allgemeinen Fall von zwei Punkten \(U \) und \(V \) auf einer elliptischen Kurve \(y^2 = x^3 + ax + b \) und für \(K=F_p \) bzw. \(Q \) (d.h. für \(p=0 \)) bereitgestellt wird. Hierzu muss vorher die eingebaute Routine \textsc{Inverse Mod}(n,m) leicht „angepaßt“ werden, damit sie auch für \(m=0 \) die von uns gewünschten Werte liefert.

\[
\text{invmod}(n, m) :=
\]
\[
\text{If } n = 0
\]
\[
\text{return } 1/n
\]
\[
\text{INVERSE MOD}(n, m)
\]
\[
\text{add}(u, v, a, p := 0, k_+) :=
\]
\[
\text{Prog}
\]
\[
\text{If } u_11 + v_11 = \infty
\]
\[
\text{return } v
\]
\[
\text{return } u
\]
\[
\text{If } u_11 = v_11
\]
\[
\text{Prog}
\]
\[
\text{If } \text{MOD}(u_12 + v_12, p) = \infty
\]
\[
\text{return } [\infty, \infty]
\]
\[
k_- := \text{MOD}(3 \cdot u_11^2 + a) \cdot \text{invmod}(2 \cdot u_12, p)
\]
\[
\text{If } k_- \neq ?
\]
\[
\text{return } \text{GCD}(2 \cdot u_12, p)
\]
\[
\text{Prog}
\]
\[
k_- := \text{MOD}((v_12 - u_12) \cdot \text{invmod}(u_11 - u_11, p), p)
\]
\[
\text{If } k_- \neq ?
\]
\[
\text{return } \text{GCD}(v_11 - u_11, p)
\]
\[
u := \text{MOD}(k_- \cdot u_12 + k_- \cdot u_11 - u_11, p)
\]
\[
[v, \text{MOD}(-u_12 + k_- \cdot (u_11 - v), p)]
\]

Um konkret zu zeigen, dass eine elliptische Kurve den Rang 1 hat, muss man die Existenz eines Punktes \(P \) von unendlicher Ordnung zeigen, sodass sich jeder Punkt \(X \) der elliptischen Kurve darstellt lässt in der Form \(X = T + nP \) mit \(T \in E(Q)_{\text{tors}} \) und \(n \in \mathbb{Z} \). Als einen solchen Punkt \(P \) könnten wir in dem früher betrachteten Beispiel \(y^2 = x^3 - 25x \) den Punkt \((-4,6)\) wählen. Tatsächlich gilt dann z.B.

\[
\text{add}([0, 0], [-4, 6], -25) = \left[\frac{25}{4}, \frac{75}{8} \right]
\]

\[
\text{add}([5, 0], [-4, 6], -25) = \left[\frac{-5}{9}, \frac{-100}{27} \right]
\]

d.h. diese Punkte lassen sich in der Form \(T + nP \) mit \(T \in \{O, (0,0),(-5,0),(5,0)\} \) darstellen. Für \(n<0 \) benötigen wir dabei den Punkt \(-P\), der sich durch einfache Vorzeichenänderung der \(y\)-Koordinate ergibt. Invertierung bez. + ist also für elliptischen Kurven gewissermaßen „gratis“! Auch dazu noch die kurze Derive-Routine:

\[
\text{inv}(u, p := 0) :=
\]
\[
\text{If } \text{FIRST}(u) = \infty
\]
\[
[u_11, \text{MOD}(-u_12, p)]
\]
Damit können wir dann definieren

\[
\begin{align*}
nP := \begin{cases}
 P + \ldots + P (n-mal), & \text{falls } n \geq 0 \\
 (-P) + \ldots + (-P) (|n|-mal), & \text{falls } n < 0
 \end{cases}
\end{align*}
\]

Was die Berechnung von \(nP \) betrifft, so haben uns bereits die alten Ägypter „vorexzerziert“, wie man so etwas macht, und zwar am Beispiel der Bildung von additiven Potenzen von natürlichen Zahlen, was dann natürlich auf die Berechnung eines Produkts hinausläuft. Indem man ihr Verfahren z.B. für die Berechnung des Vielfachen 43P von P anwendet, erhält man mit Hilfe der Binärdarstellung von 43

\[
43P = (2^5 + 2^3 + 2^1 + 2^0) \cdot P = 2(2(2(2(2P)))) + 2(2(2P)) + 2P + P
\]

Außer der Folge \(P, 2P, 2(2P), 2(2(2P)), \ldots \) benötigt man für die praktische Durchführung dieser Rechnung noch die weitere Folge 43, 21, 10, 5, 2, 1, welche man aus 43 durch fortgesetztes Halbieren und Runden auf die nächstkleinere ganze Zahl erhält. Wird diese Folge nämlich mod 2 betrachtet, was dann also 1, 1, 0, 1, 0, 1 ergibt, so ist dies in umgekehrter Reihenfolge (!) gerade die Binärdarstellung von 43 = (101011)_2, welche wir für die „richtige“ Aufsummierung von Gliedern der Folge \(P, 2P, 2(2P), 2(2(2P)), \ldots \) gemäß obiger Formel benötigen.

Und hier nun das Programm zur Berechnung der Vielfachen \(nU \) eines Punkts \(U \) auf einer elliptischen Kurve \(y^2 = x^3 + ax + b \), wobei \(a \) und \(p \) die gleiche Bedeutung wie schon in \(\text{add}() \) haben. (Insbesondere gibt der Wert von \(p \) weiterhin an, ob wir in \(\mathbb{Q} \) oder in \(\mathbb{F}_p \) rechnen.)

\[
\text{multiple}(u, n, a, p := 0, b_\text{__}) := \\
\begin{align*}
\begin{array}{rcl}
\text{Prog} & \text{If } n < 0 & \text{RETURN multiple((u, p), -n, a, p)} \\
& b_\text{__} & := \left[u, w \right] \\
\text{Loop} & \text{If } n = 0 & \text{RETURN } b_\text{__} \\
& \text{If } \text{ODD}(n) & \\
& \text{Prog} & b_\text{__} := \text{add}(u, b_\text{__}, a, p) \\
& \text{If } \text{NUMBER}(b_\text{__}) & \text{RETURN } b_\text{__} \\
& u & := \text{add}(u, a, p) \\
& \text{If } \text{NUMBER}(u) & \text{RETURN } u \\
& n & := \text{FLOOR}(n, 2)
\end{array}
\end{align*}
\]

TABLE(multiple([-4, 6], n, -25), n, 1, 5):

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1681</td>
<td>62279</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>144</td>
<td>1728</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2439844</td>
<td>39601568754</td>
<td>5094049</td>
<td>1149726593</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>111834127932921</td>
<td>17910756342232245919</td>
<td>58674456250238065124</td>
<td>208537600783277256119783839874</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>79467131846613549825</td>
<td>708804944665700880839592625</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Die oben gerechneten Vielfachen zeigen auch an, dass die früher definieren „Höhen“ der Vielfachen \(nP \) mit wachsendem \(n \) sehr stark ansteigen. Hier noch zum Abschluß das doch recht beeindruckende Dreieck, welches für \(d=5 \) dem Vielfachen 5P in obiger Liste entspricht:

\[
\text{triangle} \begin{bmatrix}
58674456250238065124 & 208537600783277256119783839874 \\
79467131846613549825 & 708804944665700880839592625 \\
00000000000000000000 & 00000000000000000000 \\
\end{bmatrix}
\]

\[
\text{triangle} \begin{bmatrix}
3940891888097367443 & 6345823116489767900 \\
6345823116489767900 & 2791758439483232689537325361460110876117562457825 \\
\end{bmatrix}
\]
3. Elliptische Kurven in der Kryptographie

Im Gegensatz zu den bisher betrachteten Beispielen, werden in der Kryptographie elliptische Kurven ausschließlich über endlichen Körpern F_q mit $q = p^m$ ($p \in P$) betrachtet, und hier wiederum nur solchen, wo entweder $m=1$ und p „groß“ oder $p = 2$ ist. Was den ersteren Fall betrifft, haben wir dabei ja schon in der Weise „vorgesorgt“, als alle bisher vorgestellten Routinen auch mod p voll funktionieren, was uns nun zugute kommt.

- Alice und Bob einigen sich auf eine elliptische Kurve E über einen endlichen Körper F_q (wie oben beschrieben) und auf einen Startpunkt $P \in E$.
- Alice wählt eine geheime ganze Zahl a und sendet aP an Bob.
- Bob wählt seinerseits eine geheime ganze Zahl b und sendet bP an Alice.
- Alice berechnet den Schlüssel $x = a(bP)$.
- Bob berechnet den Schlüssel $x = b(aP)$.
- Der gemeinsame Schlüssel x enthält dann in codierter Form alle Informationen, mit deren Hilfe in der Folge nach einem gängigen traditionellen Verfahren Nachrichten zwischen Alice und Bob verschlüsselt werden können.

Die Sicherheit des Verfahrens basiert auf der Schwierigkeit des ECDLP (=Elliptic Curve Discrete Logarithm Problem): Bei geeigneter Wahl der Parameter – wie schon erwähnt sollte insbesondere q nach heutigen Maßstäben mindestens 160 Bits haben - ist es sehr schwer bzw. praktisch unmöglich, aus P und aP bzw. bP die Zahlen a und b zu berechnen! Andere wichtige Chiffrierverfahren, die auf DLP basieren und für die es dementsprechend auch eine „ECDLP-
Variante" gibt sind das ElGamal-Verfahren und das Verfahren von Massey-Omura (siehe dazu [6]).

Bekannte Attacken auf das ECDLP sind die nachfolgenden (wobei die beiden erstgenannten auch auf das allgemeine DLP in Gruppen anwendbar sind und zwar mit einem Aufwand, der stets proportional zu \sqrt{p} mit p als dem größten Primteiler von $#E$ ist):

- Pollard's \approx-Methode
- Shanks' „Baby-step Giant-step“- Methode
- MOV-Attacke (nach Menezes, Okamoto, Vanstone), welche für supersinguläre Kurven, d.h. Kurven mit $#E(F_q) = q + 1 \mod p$, ECDLP in Subexponentialzeit lösen kann
- Anomale Kurven Attacke (Kurven mit $#E(F_q) = q$), für welche ECDLP mit Hilfe von sog. p-adischen Zahlen gelöst werden kann

Was die Auswahl der Parameter für die elliptische Kurve betrifft, gibt es da vor allem eine Schwierigkeit. Man muss unbedingt sicherstellen, dass der Basispunkt P eine hohe Ordnung besitzt, was darauf hinausläuft, dass die Anzahl $#E$ der Punkte für die zugrundegelegte elliptische Kurve E durch eine große Primzahl teiler sein sollte, welche höchstens um einige Stellen kleiner als $#E$ ist. Trifft dies nämlich nicht zu, so gibt es dann auch noch die Attacke von Pohlig-Hellman auf ECDLP, welche zwar im Normalfall völlig harmlos ist, aber genau diese Schwachstelle höchst effizient ausnützt.

Um ganz sicher zu gehen, dass $#E(F_q)$ nicht "glatt" ist, d.h. nicht nur relativ kleine Primfaktoren besitzt, sollte man also $#E(F_q)$ auf jeden Fall berechnen. Dies ist möglich, wenn auch nicht ganz einfach. Wir werden nachfolgend wieder für den Spezialfall $m=1$, d.h. dass $q = p$ eine Primzahl ist, zwei grundverschiedenen Ansätze dazu skizzieren.

Der erste besteht darin, dass man eine ausreichend große (z.B. 50-stellige) Primzahl p und eine elliptische Kurve E: $y^2 = x^3 + ax + b \mod p$ vorgibt und dazu $#E(F_p)$ bestimmt. Eine naive Möglichkeit dazu, welche allerdings für Primzahlen dieser Größenordnung sicher nicht in Frage kommt, bestünde nun darin, alle in Frage kommenden x-Werte, nämlich $x=0,1,2,\ldots,p-1$ daraufhin zu überprüfen, ob es keinen, einen oder zwei y-Werte dazu gibt und diese Lösungszahlen (vermehrt um 1 für den Punkt O) aufzuaddieren. Für kleine Beispiele, etwa $p<10^6$, wäre diese Methode aber noch durchaus ausreichend, weshalb nachfolgend das kurze Programm dazu angegeben ist.

\[
\begin{align*}
card(a, b, p) &:= p + 1 + \Sigma(MODS((x^3 + a \cdot x + b)^{(p - 1)/2} - p), x, 0, p - 1, 1) \\
card(1, 2, 10^6 + 3) &= 100152 \\
card(1, 2, 10^6 + 3) &= 999328
\end{align*}
\]

(Die Rechenzeiten für die beiden Beispiele betrugen dabei übrigens 12.6s bzw. 193.6s auf meinen 2GHz-PC.)

Eine schon etwas bessere Methode, wenngleich in unserem Fall ebenfalls noch nicht ausreichend, besteht darin, das sog. "Hasseintervall"

\[
[p+1-2\sqrt{p}, p+1+2\sqrt{p}]
\]

in dem ja nach dem schon zitierten Satz von Hasse $#E(F_p)$ jedenfalls liegen muss, systematisch auf alle Zahlen n hin zu durchsuchen, sodass für einen vorher ausgewählten Punkt P gilt $nP=O$. Aus diesem n kann dann leicht auch die Ordnung von P gewonnen, indem man für jeden Primteiler r von n, für welchen ebenfalls $(n/r)P=O$ gilt, n durch n/r ersetzt,
solange dies möglich ist. Das resultierende \(n \) muss dann \(\text{ord}(P) \) sein. Ist dann \(\text{ord}(P) > 4\sqrt{p} \), was in der Praxis fast immer zutrifft, so ist das zu Beginn gefundene \(n \) das einzige Vielfache von \(\text{ord}(P) \) im Hasseintervall und daher die gesuchte Anzahl \(\#E(F_p) \). Ist obige Bedingung für \(\text{ord}(P) \) nicht erfüllt, so könnte dann z.B. das Ganze für einen anderen Punkt \(P \) wiederholen oder nach mehreren Fehlversuchen auch zum sog. „quadratischen Twist“ \(\widetilde{E} \) von \(E \) übergehen, der die Gleichung

\[
y^2 = x^3 + g^2ax + g^3b
\]

besitzt, wobei \(g \) ein fix gewählter quadratischer Nichtrest mod \(p \) ist, d.h. die Kongruenz \(x^2 \equiv g \bmod p \) darf für dieses \(g \) nicht lösbar sein! Wie nämlich Mestre gezeigt hat, funktioniert dann obiges Verfahren zur Bestimmung der Punkteanzahl für \(p > 229 \) entweder für \(E \) selbst oder für \(\widetilde{E} \) sicher, womit man dann gemäß der leicht zu beweisenden Formel

\[
\#E(F_p) + \#\widetilde{E}(F_p) = 2(p + 1)
\]

auch die Ordnung der jeweils anderen Kurve kennt!

Die folgende Routine dient sowohl zur Bestimmung der Ordnung eines Punkts \(U \) auf der elliptischen Kurve, welche wieder durch \(U \) und \(a \) festgelegt ist, wenn nämlich \(s \) den Defaultwert 1 hat, als auch zur Bestimmung von \(\#E(F_p) \) (mit der „Schalterstellung“ \(s=2 \), jedoch nur dann, wenn \(U \) gemäß dem oben Gesagten geeignet, d.h. \(\text{ord}(U) \), „nicht zu klein ist“). Mit \(s=0 \) erhält man dagegen nur irgendein \(n \) im Hasseintervall mit \(nU=O \), was für viele Zwecke nützlich und ausreichend ist. Der verwendete Algorithmus ist dabei im wesentlichen die „Baby-step Giant-step“- Methode von Shanks, die auch schon oben im Zusammenhang mit DLP erwähnt wurde. (Einzelheiten dazu entnehme man am besten dem Programm selbst.)

\[
\text{ord}(u, a, p, s := 1, 1 := 0, j := 1, n := u, v := w := x := y :=) := \text{CEILING}(p^{1/4}))
\]

\[\text{v} := \text{ITERATES}(\text{add}(u, t, a, p), t, \text{multiple}(u, p + 1, a, p), n - 1)\]

\[\text{x} := u \text{ COL } 1\]

\[\text{y} := u \text{ COL } 2\]

\[\text{w} := \text{multiple}(u, n \text{ a, p})\]

\[\text{u} := [w, a]\]

\text{Loop}

\text{If MEMBER?(FIRST(u), x) \text{ Loop}}

\text{If FIRST(u) = FIRST(x) \text{ Loop}}

\text{u} := \text{IP(u = \text{y} \cdot \text{t}, p + 1, n + 1, p + 1, n + 1, j)}

\text{IF} s = 0 \text{ RETURN u}

\text{v} := (\text{FACTOR}(p)) \text{ COL } 1

\text{u} := u

\text{Loop}

\text{x} := \text{I(\text{SELECT(multiple(u, u, t, a, p) = [w, a], t, v)) \text{ IF x = 1 \text{ RETURN IP(s = 1, u, IP(u > 4 \cdot \text{y}p, w))}}}

\text{u} := \text{x}

\text{v} := \text{SELECT(\text{MOD(u, t) = 0, t, v))}

\text{u} := \text{REST(u)}

\text{y} := \text{REST(y)}

\text{j} := 1

\text{u} := \text{add(u, w, a, p)}

\text{j} := 1

\text{If MEMBER?(FIRST(u), x) \text{ Loop}}

Damit lassen sich nun auch schon etwas größere Beispiele rechnen, in denen \(p \) bis zu etwa 18-20 Stellen haben darf, je nach vorhandenem Speicher. Wir werden diese Routine weiter unten gleich benötigen, rechnen aber vorher noch das Beispiel von vorhin mit \(p=10^{6} + 3 \) und \(U=[1,2] \).

\text{ord}([1, 2], 1, 10^{6} + 3, 0) = 10000004

\[\text{ord}([1, 2], 1, 10^6 + 3, 1) = 4 \]
\[\text{ord}([1, 2], 1, 10^6 + 3, 2) = ? \]

Wie man sehen kann, hat der Punkt die tatsächliche Ordnung 4, ist also für unsere Zwecke gänzlich ungeeignet. Aber mit der Routine points() lassen wir uns einige weitere Punkte anzeigen und werden bald wie folgt „fündig“. (Die eigentliche Berechnung von \#E dauerte dabei jetzt nur mehr 0.09s!)

\[\text{points}(1, 2, 10^6 + 3, 3) = \{ [1, 2], [1, 1000001], [5, 342322] \} \]
\[\text{ord}([5, 342322], 1, 10^6 + 3, 1) = 499664 \]
\[\text{ord}([5, 342322], 1, 10^6 + 3, 2) = 999328 \]

Ich möchte statt dessen doch noch kurz auf den oben angekündigten zweiten Ansatz zur Lösung des Problems eingehen, der darin besteht, dass man sich der Auswahl der elliptischen Kurven von vornherein auf einen gewissen Kurventyp, nämlich sog CM-Kurven beschränkt (CM steht dabei für „complex multiplication“ ohne dass ich hier auf die Bedeutung dieser Namensgebung näher eingehen kann), für die man relativ einfache Formeln kennt, mit deren Hilfe man ihre Punkteanzahl dann leicht bestimmen kann. Ein einfaches Beispiel in dieser Richtung, ist der folgende bereits von Gauß bewiesene

\textbf{Satz:} Ist die elliptische Kurve \(E \) von der Bauart \(y^2 = x^3 + ax \) über \(\mathbb{F}_p \), so hat man zwei Fälle zu unterscheiden:

1. Supersingulärer Fall: Ist \(p = 3 \mod 4 \), so gilt \(\#E(\mathbb{F}_p) = p + 1 \).
2. CM-Fall: Ist \(p = 1 \mod 4 \) und \(p = u^2 + v^2 \), so gilt \(\#E(\mathbb{F}_p) \in \{ p+1 \pm 2u, p+1 \pm 2v \} \).

Allgemeiner geht man zur der Konstruktion von CM-Kurven mit bereits vorher feststehender Ordnung so vor, dass man aus einer Zahlenreihe von Zahlen \(D \) mit \(D < 0 \) und \(D \equiv 0,1 \mod 4 \), nämlich

(für den Eingeweihten sind dies übrigens die negativen Diskriminanten \(D \) mit \(D \equiv 0,1 \mod 4 \) von binären quadratischen Formen nach aufsteigender Klassenzahl \(h(D) \) und Absolutgröße geordnet) in der vorgegebenen Reihenfolge nach diejenigen auswählt, für welche die Diophantische Gleichung

\[x^2 + |D|y^2 = 4p \]

lösbar ist. Ein offensichtliche notwendige Bedingung für die Lösbarkeit ist dabei, dass \(D \) ein quadratischer Rest \(\mod p \) ist. Ist diese Vorbedingung erfüllt, so ist die Wahrscheinlichkeit für die Lösbarkeit gegeben durch \(1/h(D) \), was mit ein Grund für obige Anordnung der \(D \)-Werte ist. Glücklicherweise ist die Auffindung der Lösungen, falls solche existieren, in der Praxis
überhaupt kein Problem, da man für diesen Zweck den höchsten verfügbaren Algorithmus von Cornacchia-Smith zur Verfügung hat. Wer nachfolgendes Programm dazu analysiert, wird übrigens überraschenderweise Elementen des Euklidischen Algorithmus darin entdecken.

\[
\text{CS}(p, D, a, b, c, r) :=
\]

\[
\text{Prog}
\]

\[
\text{If } \text{JACOBI}(D, p) < 1
\]

\[
\text{RETURN False}
\]

\[
b_+ := \text{SQUARE _ROOT}(D, p)
\]

\[
\text{If } \text{ODD}(b_+ - D)
\]

\[
b_+ := p - b_-
\]

\[
a_- := 2 \cdot p
\]

\[
c_- := \text{FLOOR}(2 \cdot \sqrt{p})
\]

\[
\text{Loop}
\]

\[
\text{If } b_\leq c_- \text{ exit}
\]

\[
r_- := \text{MOD}(a_-, b_-)
\]

\[
a_+ := b_-
\]

\[
b_- := r_-
\]

\[
a_- := 4 \cdot p - b_-^2
\]

\[
\text{If } \text{MOD}(a_-, \text{ABS}(D)) > 0
\]

\[
\text{RETURN False}
\]

\[
c_- := \langle a_-, \text{ABS}(D) \rangle
\]

\[
\text{If } \text{INTEGER}(c_-)
\]

\[
\text{RETURN TRUE}
\]

\[
[tb, ts] :=
\]

Hat man zu einem D obiger Liste mit Hilfe dieses Programms ganzzahlige Lösungen \(x = \pm u, y = \pm v\) von obiger Diophantischer Gleichung gefunden, so kann man ähnlich wie im CM-Fall des Satzes von Gauß eine Liste von „Kandidaten“ der Kurvenordnung und dazugehörige Kurven sofort angeben (für Einzelheiten siehe [2]).

Übrigens findet sich hier der CM-Fall des Satzes von Gauß für \(D = -4\) wieder, d.h. man hat hier die Diophantische Gleichung \(x^2 + 4y^2 = 4p\) zu lösen und die Kurvenordnung ergibt sich dann als eine der vier Zahlen \(p+1\pm u, p+1\pm 2v\), wobei \(u^2 + 4v^2 = 4p\). Nachfolgend ein einfaches Beispiel dazu, wofür wir die CM-Kurve \(y^2 = x^3 + 3x\) und eine zufällig ausgewählte 50-stellige Primzahl \(p\) der Form \(4k+1\) gewählt haben.

\[
(p := \text{NEXT_PRIME}(\text{RANDOM}(10))) = 339774582904501876202479485548554716077280687283261
\]

\[
[DIM(p), \text{MOD}(p, 4)] = [58, 1]
\]

\[
\text{CS}(p, -4) = \{\pm 1097625809448816410403210, \pm 1964153333615495570105606\}
\]

\[
[u := 1097625809448816410403210, v := 1964153333615495570105606]
\]

\[
\text{points}(3, 0, p) = \{(0, 0), (1, 2), (1, 339774582904501876202479485548554716077280687283259)\}
\]

\[
P := [1, 2]
\]

\[
\text{SELECT}(\text{multiple}(P, n, 3, p) = \{e, m\}, n, \{p + 1 + u, \ p + 1 - u, \ p + 1 + 2 \cdot v, \ p + 1 - 2 \cdot v\}) =
\]

\[
[339774582904501876202479375777794621589042756800052]
\]

\[
N := 339774582904501876202479375777794621589042756800052
\]

\[
\text{FACTOR}(N) = 2 \cdot 13 \cdot 8644633 \cdot 755859340045708740864587350977403392368297
\]

\[
r := 755859340045708740864587350977403392368297
\]

\[
[DIM(r), \text{DIM}(N)] = [41, 58]
\]

Wie man aus obigen Rechnungen ersehen kann, ist auch die Kurvenordnung, welche oben mit \(N\) bezeichnet wurde, 50-stellig und enthält einen 41-stelligen Primfaktor \(r\), was für Zwecke der Kryptographie mehr als ausreichend sollte.

Um diese Daten zu erhalten, musste hier eine 50-stellige Zahl faktorisiert werden, was i.allg. schon nicht mehr ganz einfach ist. Dies gibt mir Gelegenheit darauf hinzuweisen, dass Derive
intern zum Faktorisieren mehrere Methoden abwechselnd verwendet, wobei eine davon auch ECM (= Elliptic Curve Method) ist, eine von H.W. Lenstra jr. (s. [5]) im Jahre 1985 eingeführte Faktorisierungsmethode, welche ebenfalls auf elliptischen Kurven basiert.

Um ECM besser zu verstehen, machen wir folgendes Gedankenexperiment. Was würde eigentlich passieren, wenn wir in add(u,v,a,p) bzw. multiple(u,n,a,p) für den Parameter p, von dem wir bisher immer angenommen hatten, dass er 0 oder prim ist, eine zusammengesetzte Zahl n einsetzen? Wenn man sich dazu die definierenden Gleichungen für die Punktaddition noch einmal genauer ansieht, wird man feststellen, dass dann die Variable k nicht mehr notwendigerweise definiert sein wird, nämlich dann nicht, wenn die auftretenden Nenner \(x_2 - x_1 \) bzw. \(2y_1 \mod p \) nicht invertierbar sind, d.h. wenn gilt \(ggT(x_2-x_1,p) > 1 \) bzw. \(ggT(2y_1,p)>1 \). Unsere Routinen sind dabei schon vorsorglich so geschrieben worden, dass sie in diesem Fall diese ggT ausgeben, welche i.allg. nichttriviale Teiler von n darstellen.

Der Grundgedanke von ECM ist nun kurz gesagt der, genau diesen Fall zu provozieren, indem man für eine vorgegebene elliptische Kurve E und einen Punkt \(P \in E \) ein geeignetes Vielfaches \(mp \mod n \) berechnet und hofft, dass dies in der beschriebenen Weise zu einem Teiler von n führt. Die Chancen dafür sind dann recht gut, wenn es einen Primteiler q von n gibt, sodass \(#E(F_q) \) "glatt", d.h. keine wirklich großen Primteiler besitzt, da dann ein \(m \) der Form \(m=kgV(1,2,\ldots,B) \) für eine nicht zu große Schranke B den Zweck erfüllen wird.

Zurückkehrend zu unserem Beispiel wollen wir annehmen, wir hätten die kleinen Teiler 4 und 13 durch Probedivision schon gefunden. Der zweitgrößte Primteiler ergibt sich dann wie folgt:

\[
\text{multiple } \left\{ [1, 1], \text{LCM}([1, \ldots, 1000]), 17, \frac{N}{4 \cdot 13} \right\} = 8644633
\]

Wie die nachfolgende Rechnung zeigt, führte dies hier deshalb zum Erfolg, weil für die gewählten Parameter die Ordnung vom Punkt \((1,1) \) in \(E(F_{8644633}) \) bemerkenswert glatt ist:

\[
\text{FACTOR}(\text{ord}([1, 1], 17, 8644633)) = 3 \cdot 11 \cdot 29 \cdot 79
\]

Hier noch ein etwas größeres Beispiel, nämlich die Faktorisierung der Fermatszahl \(F_8 \), was insbesondere auch die Leistungsfähigkeit der Routine \(\text{ord}() \) nochmals schön aufzeigt:

\[
\text{multiple } \left\{ [1, 1], \text{LCM}([1, \ldots, 7000]), 134, 2^8 + 1 \right\} = 1238926361552897
\]

\[
\text{FACTOR}(\text{ord}([1, 1], 134, 1238926361552897)) = 3 \cdot 5 \cdot 19 \cdot 47 \cdot 2557 \cdot 5237 \cdot 6907
\]

Auch wenn es dann im Detail noch sehr viele Feinheiten der Implementierung gibt (s. z.B. [7]), insbesondere auch was die Berechnung von \(mp \mod n \) betrifft, die in der Praxis gewissermaßen "scheibchenweise" erfolgt, so gibt es zur Grundidee von ECM nicht viel mehr zu sagen! Sie gehört übrigens zur Klasse der subexponentiellen Faktorisierungsmethoden und es können damit Primfaktoren bis etwa 40 Stellen gefunden werden, in Einzelfällen auch noch weit darüber hinaus!

Eine letzte Frage bezüglich unseres 41-stelligen Primfaktors \(r \) von \(N \) bleibt noch zu klären: Können wir uns auch wirklich ganz sicher sein, dass \(r \) prim ist? Schließlich erfolgt die Feststellung der Primality in Derive (wie auch in jedem anderen CAS!) standardmäßig mit Hilfe probabilistischer Primzahltests, wobei also rein theoretisch (mit einer allerdings sehr kleinen Wahrscheinlichkeit!) zusammengesetzte Zahlen als prim ausgewiesen werden können. Will man diesen letzten Rest an Unsicherheit beseitigen, so muss man noch zusätzlich einen streng deterministischen Primzahltest anwenden. Dafür gibt es mehrere
Möglichkeiten, eine davon – der Leser hat es längst erraten! – basiert wiederum auf elliptischen Kurven. Theoretische Grundlage dafür ist der folgende (s. [3])

Satz (Goldwasser-Kilian): Sei \(N > 1 \) eine natürliche Zahl mit \(\gcd(6, N) = 1 \) und sei \(E \) die Menge der Punkte \((x, y)\), welche eine Gleichung
\[
y^2 = x^3 + ax + b \mod N
\]
mit gewissen ganzen Zahlen \(a, b\) erfüllen, wobei \(\gcd(4a^3 + 27b^2, N) = 1 \) sei. Gibt es dann ein \(m \in N \) und einen Primteiler \(q > (4\sqrt{N} + 1)^2 \) von \(m \), sowie einen Punkt \(P \) von \(E \), sodass mit der wie für eine elliptische Kurve erklärten Addition gilt
\[
mP = O, \text{ aber } (m/q)P \neq O
\]
so ist \(N \) prim.

Prinzipiell ist dazu noch zu sagen, dass dieser Test natürlich erst zur Anwendung kommt, wenn \(N \) schon eine Reihe von einfachen probalistischen Primzahltests bestanden hat, sodass also mit hoher Wahrscheinlichkeit \(N \) wirklich prim ist und man auf einer „echten“ elliptischen Kurve rechnet. Eventuell daraus resultierende Probleme würden gerade die Zusammen- gesetzung von \(N \) beweisen! Dies gilt insbesondere auch für die Berechnung von \(m \), für welches man üblicherweise \(m \equiv \#E \) nimmt, wobei \(E \) am einfachsten wieder als CM-Kurve angenommen wird.

Eine weitere Hürde ist ferner die Auffindung eines „genügend großen“ Primteilers \(q \) von \(m \), falls ein solcher existiert. Dabei wird man in der Regel sich zunächst damit begnügen, dass \(q \) eine wahrscheinliche Primzahl ist, und erst nach bestandenen Test sich der Frage der Primalität von \(q \) erneut zuwenden, indem man zeigt, dass auch \(q \) den Goldwasser-Kilian-Test besteht. Da die \(q \)-s exponentiell abnehmen, werden sie schnell so klein, dass der Nachweis der Primalität dann kein Problem mehr ist.

Die Gesamtheit aller Parameter, welche für die Tests verwendet wurden, bildet dann übrigens ein sog. Primzahltestsche, das eine eventuelle Wiederholung oder Überprüfung des Tests sehr einfach macht. Dies ist der Hauptvorteil gegenüber den sog. APRCL-Test, einem ebenfalls sehr leistungsstarken deterministischen Primzahltest (s. [1]).

Es sei auch noch erwähnt, dass der derzeitige „Rekord“ (Juli 2003) für eine deterministisch getestete Primzahl allgemeiner Bauart (namlich die Primzahl \((32 \times 10^{699} - 23)/99\) mit immerhin 6959 Stellen!) von dieser Methode gehalten wird, zu der außer Goldwasser-Kilian auch noch Atkin und Morain wichtige Beiträge geleistet haben, und die heute unter der allgemeinen Bezeichnung ECPP (=Elliptic Curve Primality Proving) zusammengefasst wird.

Abschließend noch ein etwas kleineres Beispiel, nämlich die Anwendung obiger Überlegung auf unser 41-stelliges \(r \) von unserem obigen Beispiel. Wegen \(r = 1 \mod 4 \) kann man ähnlich wie oben (und unter Verwendung der gleichen Kurve und des gleichen Punkts) \#\(E(F_r) \) berechnen und daraus die im Satz verlangten Werte von \(m \) und \(q \) bestimmen.

\[
\text{CS}(r, -4) = [\pm 492242655651773727152, \pm 122516227471274471789]
\]

\[
u := 492242655651773727152, v := 122516227471274471789
\]

\[
\text{SELECT(multiple([1, 2], N, 3)) = \{m, m\}, N = [r + 1 + u, r + 1 - u, r + 1 + 2u, r + 1 - 2u]} = \{7558593404579086409510471751618641146\}
\]

\[
m := 7558593404579086409510471751618641146
\]

\[
\text{FACTOR(m)} = 2 \cdot 13 \cdot 146009 \cdot 199107678832681918089065275597276569
\]

\[
q := 199107678832681918089065275597276569
\]
SOLVE\(q > \frac{1}{4}(r^2 + 1)\) = true

\[\text{multiple}\{[1, 2], n, 3, r\} = [\omega, \omega]\]

\[\text{multiple}\{[1, 2], \frac{n}{q}, 3, r\} = [14145982619555647832946456868328147749959, 564934633804381678599672179017863183277293]\]

Wie aus obigen Rechnungen folgt, sind also die Voraussetzungen des Satzes mit diesen Parametern tatsächlich erfüllt, woraus folgt, dass unser 41-stelliges \(r\) somit genau dann prim ist, wenn dies für obiges 35-stelliges \(q\) gilt. In dieser Weise macht man dann mit \(q\) anstelle von \(r\) weiter, was ich hier aber nicht mehr weiter ausführen will.

Obwohl hier viele wichtige Fakten über elliptische Kurven überhaupt nicht zur Sprache gekommen sind, - nochmals sei an das Eingangsdatum aus berufemem Munde erinnert, - hoffe ich doch damit einen kleinen Einblick gegeben zu haben in die wahrhaft faszinierende Welt dieser Kurven und ihren vielfältigen Anwendungsmöglichkeiten. Insbesondere ist es meine ganz große Hoffnung, dass die mit viel Liebe zusammengestellten und in ihrem Bereich doch erstaunlich leistungsfähigen Derive-Programme (welche ich übrigens auf Anforderung auch gerne zuschicke!) dem interessierten Leser dazu anreizen mögen, vieles von dem, was hier nur angedeutet wurde, auf eigene Faust zu erkunden. Für Anregungen und Verbesserungsvorschläge bin ich jederzeit dankbar!

Literatur

Anschrift des Verfassers

Ao. Prof. DI Dr. Johann Wiesenbauer
(j.wiesenbauer@tuwien.ac.at)

Institut für Algebra und Computermathematik
der Technischen Universität Wien
Wiedner Hauptstr. 8-10
A-1040 Wien