Mathe online – Hilft Multimedia beim Verstehen?
Franz EMBACHER, Univ. Wien

Abstract

Multimediale und interaktive Lernhilfen können auf mehrere Weisen verstehensfördernd gestaltet und eingesetzt werden. Im Rahmen des Projekts mathe online werden unter der frei zugänglichen WWW-Adresse

http://www.univie.ac.at/future.media/mo

Einheiten erstellt, die diesem Ziel dienen und neue Wege der Mathematikdidaktik veranschaulichen sollen. Die dabei in erster Linie verwendeten Methoden sind

- Visualisierungen zu wichtigen Definitionen und Sachverhalten,
- interaktive Tests, die dem frühen Erkennen von Missverständnissen (so genannten "Fehlern") dienen, und eine
- knappe Darstellung der stofflichen Inhalte.

mathe online

mathe online ist frei zugänglich und wird mittlerweile an zahlreichen Schulen eingesetzt. (Die gleichzeitig mit mathe online aufgebaute – kleine – englische Schwester maths online wird in Schulen des englischsprachigen Raum verwendet). Die gesamte Website kann downgeladet und auf einem lokalen Rechner installiert werden. In einem seit Anfang 1999 laufenden EU-Projekt wird der Einsatz von mathe online in der Erwachsenenbildung getestet.

Die Struktur der Website von mathe online und die Auflistung aller Angebote ist Gegenstand einiger Publikationen (siehe die Literaturliste unten) und kann am besten durch eigenen Augenschein erkannt werden. In diesem Vortrag werden einige Probleme von didaktischer Relevanz herausgegriffen, auf die mathe online eine Antwort zu geben versucht.
Ist Verstehen immer Arbeit?

Verstehen – insbesondere das Verstehen formaler und symbolischer Zusammenhänge – ist immer eine besondere Konstruktionsleistung. Das bedeutet aber keineswegs, dass das Verständnis mathematischer Schlüsselsituationen immer mit Mühsal verbunden sein muss.

In der populärsten Komponente von mathe online, genannt "Galerie", wird versucht, zentrale Begriffe und Sachverhalte durch interaktive Visualisierungen leichter versteherbar zu machen, als dies mit Hilfe statischer Graphiken möglich ist. Die Lernhilfen der "Galerie" sind – technisch gesehen – zumeist Java-Applets, die sich mit jedem modernen Web-Browser aufrufen lassen. Alle in diesem Abschnitt zitierten Lernhilfen lassen sich von der Überblickeise aus aufrufen.

http://www.univie.ac.at/future.media/mo/galerie.html

Als Einstiegsbeispiel sei das Applet Parameterdarstellung von Geraden erwähnt. Es illustriert, wie durch die Verwendung bewegter Elemente eine Variable (hier: der Parameter entlang einer Geraden) tatsächlich "variiert" kann. Die mathematische Bedeutung des Parameters in der Parameterdarstellung kann auf diese Weise nicht nur der Anschauung recht nahe gebracht werden, durch die eingeblendeten variierenden Zahlenwerte können die Benutzer/Innen durch eigene Aktivitäten auch den Zusammenhang zur symbolischen Schreibweise "verfolgen".

Im Applet Räumliche Koordinaten können Punktekoordinaten auf drei-dimensionaler Art und Weise übersetzt werden, um Ablesungen der Raumkoordinaten vorzunehmen.

So wie diese beiden sind die meisten Lernhilfen der Galerie auf bestimmte Situationen zugeschnitten. Insofern haben sie keinen Werkzeugcharakter, sondern mögen auf den ersten Blick sogar etwas "mager" aussehen. (Ausnahmen: Funktionsplotter, Lernhilfen zu Folgen und Reihen).

Ein besonderes Merkmal dieser Herangehensweise ist, dass kaum eine aussermathematische Motivation (deren Bedeutung ich nicht in Abrede stelle) ins Spiel gebracht wird, um die betrachtete Situation und die Aufgaben so klar ("mathematisch rein") wie möglich zu gestalten. Auch wird klar, dass die mit mathe online verbundenen Lernziele durchaus im klassischen Kanon verbleiben, wenngleich sie mit neuen Methoden erreicht werden sollen.

Applets wie die hier vorgestellten eignen sich für eine Vielzahl von Zwecken – nicht nur für die wenigen konkreten Aufgaben, die ihnen beigegeben sind. Für einen effizienten Einsatz im Unterricht ist es seitens der LehrerInnen sinnvoll, über Adaptionen für den eigenen Unterricht nachzudenken. Als Beispiel für die Möglichkeit, eigene Aufgaben zu existierenden Applets zu formulieren, sei ein Arbeitsblatt von Susan Socha (McLean High School, Virginia) zum Thema Funktionen

http://www.univie.ac.at/future.media/mo/untvoschl.html#fun1

und ein Arbeitsblatt Karinna Traxler (GRG 23/VBS Wien) zum Thema Winkelfunktionen

http://www.univie.ac.at/future.media/mo/untvoschl.html#wfun

genannt. Auch die konkreten Einsatz-Szenarien der Applets können von einem 5-minütigen Beschneppern bis zu längeren Gruppenarbeiten reichen.

Natürlich eignen sich interaktive Visualisierungen sich nicht für jedes Lernziel und nicht für jedes mathematische Gebiet. Wir wenden uns nun einem anderen für mathematische Begriffsbildungen wichtigen Punkt zu, dem Phänomen des "Fehlers".

Missverständnisse einüben – Missverständnisse aufdecken

Was ist ein "Fehler"? Hier ist nicht von "Schlampigkeitsfehlern" die Rede – mir gelingt manchmal in der Eile eine Rechnung wie "2 mal 3 = 5" –, sondern von Fehlern, die eine begriffliche Tiefendimension – wie z.B. ein Missverstehen symbolischer Darstellungen – aufweisen. Um das deutlich zu machen, ein paar Beispiele:

2. Wieso fällt den meisten SchülerInnen struktur-orientiertes Betrachten eines Terms so schwer? Die Schwierigkeiten und Fallstricke beim Verstehen symbolischer Darstellungen sollten nicht unterschätzt werden. Jede mathematische Symbol kann Anlass zu Missverständnissen sein. Ich mochte Sie für ein paar Sekunden in die Lage von SchülerInnen versetzen: Ist der Term

\[xa + 2xb - cyy^2 + xa - b^2y^2 \]
immer größer-gleich Null? Dabei ist vereinbart, dass das Symbol \(x \) für "Klammer auf" und das Symbol \(y \) für "Klammer zu" steht. Um wie viel kürzer brauchen wir "Profis", um dieselbe Frage anhand der üblichen Schreibweise

\[
(a + 2(b - c))^2 + (a - b^4)^2
\]

to klären?

3. Die Frage eines Schülers anhand des Symbols \(f(x) \): "Wieso steht das \(x \) in Klammer?" ist sehr leicht als Missverständnis zu erkennen. Der möglicher Grund dafür könnte sein, dass – nach einer kurzen motivierenden Einführung des Funktionsbegriffs und der Bekanntgabe seiner Schreibweise zu schnell zum Üben übergegangen worden ist.

Nun bin ich an meinem eigentlichen Punkt angelangt: Üben ist manchmal das Einüben von Missverständnissen. Die bald einsetzende Steigerung der Komplexität der zu bearbeitenden Aufgaben kann SchülerInnen durchaus dazu zwingen, in nicht-verstandene symbolische Vorgangsweisen Zuflucht zu nehmen. Mängel an Begriﬀsbildung können in der Regel nur von mathematisch geschulten Menschen durch rechnerisches Üben behoben werden, wenn nämlich der Formalismus selbst daraufhin befragt wird, was er bedeutet. Das ist aber im Allgemeinen nicht die Vorgangsweise von SchülerInnen.

Mario Wunderl analysiert in seiner kürzlich fertig gestellte Diplomarbeit über SchülerInnenfehler in Mathematikaufgaben der schriftlichen AHS-Matura (siehe Literaturliste unten), wie beharrlich sich so genannte "Unterstufenfehler" bis in die 8. Klasse retten. Wie aus der Unterrichtspraxis hinsichtlich bekannt ist, wirken sich derartig eingeübte Fehler beim Umgang mit komplexeren Problemen äußerst hinderlich aus.

http://www.univie.ac.at/future.media/mo/tests.html

aus aufrufen.

Neben Aspekten, die auch die Applets der Galerie charakterisieren (Interaktivität, Puzzles) kommen hier weitere didaktische Vorgangsweisen zum tragen. Eine reizvolle Möglichkeit, mathematische Situationen zu durchleuchten, besteht darin, fiktive Aussagen auf ihren Wahrheitsgehalt hin zu beurteilen. Lernhilfen dieses Typs lassen sich technisch in der Form von Multiple-Choice-Tests realisieren. Dabei kann der (noch reizzvolle) Versuchung, den Nutzer in die Irre zu führen, durchaus nachgegeben werden. Letztere Idee wurde insbesondere in einer eigenen Test-Kategorie ("Wo liegt der Fehler?") verwirklicht. Ebenso wie die Applets weisen die meisten Tests einen starken Bezug zur sprachlichen Formulierung und zur Begriﬀsbildung auf. Der mathematische Schwierigkeitsgrad solcher Situationen ist variabel – wie oben gesagt, kann die Steigerung des Komplexität in die Falle führen. Was hier vor allem zählt, ist der "logische Schwierigkeitsgrad".

Als Beispiele für interaktive Tests seien erwähnt: Definition von Mengen, Bruchrechnen, Falsch gekürzt, Definitions menge, Keine Lösung?, Eigenschaften von Funktionen, Zur Definition der Ableitung und Herleitung einer Identität.

Weitere Tests sind in traditionellerem Stil gehalten, z.B. Das grosse Graphenpuzzle und Das grosse Ableitungspuzzle.

Was ist eine Funktion?

Die technischen Entwicklungen des zwanzigsten Jahrhunderts haben dem Denken über die Dinge der Welt einen grossen Pool an Ideen beschert. Eine der tiefe greifendsten dieser Neuerungen ist die Idee

In der Komponente "Mathematische Hintergründe" werden die stofflichen Inhalte knapp dargestellt. Wie aus der Überblicksseite

http://www.univie.ac.at/future.media/mo/mathint.html

hervorgeht, wurden bisher sechs Kapitel (aus einer viel größeren Liste) ausgearbeitet, darunter das Kapitel "Funktionen 1", das mit der Einführung des Funktionsbegriffs beginnt. Als Vorbild für den Funktionsbegriff wird im einleitenden Abschnitt nicht die Idee der zeitlichen Änderung einer Größe oder des Zusammenhangs zwischen zwei Größen, sondern die Funktionsweise einer "Input-Output-Maschine" verwendet.

Die modernen Internet-Techniken machen es einfach, entsprechende "Maschinen" in den Text zu integrieren: Die BenutzerInnen können Zahlen eingeben und bekommen Ausgaben zurück. Jede Maschine macht irgend etwas mit der Eingabe (was dies im konkreten Fall ist, muss zunächst erraten werden). Aber sie macht es regelmäßig ("stur") in dem Sinn, dass die gleiche Eingabe stets die gleiche Ausgabe zur Folge hat. Salopp gesprochen, ist nun jede solche "Maschine" eine Funktion. Stehen mehrere solche Maschinen zur Verfügung, so erhebt sich das Problem, sie entsprechend zu "beschreiben". Das führt relativ zwanglos zu den üblichen symbolischen Notationen.

Logisch gesehen erweckt der Computer eine viel klarere Vorstellung als etwa ein physikalischer Vorgang, und vielleicht hilft diese – oder eine ähnliche – Vorgangsweise, SchülerInnen den mathematischen Funktionsbegriff reicher zu gestalten als dies bislang üblich ist. Für Problematisierungen (z.B. den Einwand, dass in eine solche "Maschine" immer nur eine Zahl mit endlich vielen Dezimalstellen eingegeben werden kann, Funktionen auf der Menge der reellen Zahlen also so streng genommen nicht dargestellt werden können) ist nach der Festigung des Begriffs allemal Zeit.

Eigene Aktivitäten

mathe online bietet neben den hier besprochenen noch weitere Angebote, die hier nicht mehr vorgestellt werden können. Es seien abschliessend nur zwei Typen von Werkzeugen zur Unterstützung eigener Aktivitäten von LehrerInnen und SchülerInnen erwähnt:

Es besteht die Möglichkeit Puzzles selbst (online) zu gestalten. Einige der von BenutzerInnen erstellten Puzzles sind auf der Seite "Puzzle-Links" zusammengestellt. So haben z.B. Karinna Traxler und Richard Mesaric (GR 23/VBS Wien) ein Paket von Applets zur Trigonometrie zusammengestellt:

http://www.univie.ac.at/future.media/mo/dres/dres.html#AppletsTrigonometry

All jenen, die ihre Aktivitäten am Web dokumentieren wollen, wird Unterstützung beim Problem, wie mathematiche Symbole auf Webseiten gebracht werden können, geboten.

Kontakt und Rückmeldung

Rückmeldungen und Vorschläge jeder Art zu *mathe online* sind willkommen. Kontakt- und Rückmeldungsmöglichkeiten:

E-mail an die AutorInnen:

Franz Embacher: fe@ap.univie.ac.at
Petra Oberhuemer, mathe online, Beitrag zur Pädagogischen Konferenz Bildung als Konfektionsware oder maßgeschneidert?, Wien, 18. 3. 1998
Online: http://www.univie.ac.at/future.media/artikel.php

Franz Embacher und Petra Oberhuemer, mathe online, Beitrag zum Symposium Schulen ans Netz – Idee und Praxis, Donau-Universität Krems, 30. 3. 1998
Online: http://www.tim.donau-uni.ac.at/Veran/ischanez/mathe.htm

Preprint-Download: http://merlin.mpi.univie.ac.at/~fe/symp98.doc (Word 97-Dokument)

Preprint-Download: http://www.univie.ac.at/future.media/symp_klu98.doc (Word 97-Dokument)

Preprint download: http://merlin.mpi.univie.ac.at/~fe/site99.doc (Word 97-Dokument)

Franz Embacher, mathe online - ein interaktives multimediales Lehrmittel, pcnews 61, S. 87, Februar 1999.

Download: http://www.univie.ac.at/future.media/mo/literatur/potds.pdf (pdf-Dokument)
und: http://www.univie.ac.at/future.media/mo/literatur/potds.doc (Word-Dokument)

Mario Wunderl, SchülerInnenfehler in Matheamitkaufgaben der schriftlichen AHS-Matura, Diplomarbeit, Universität Wien, 1999.
Download: http://www.univie.ac.at/future.media/mo/dres/dres.html#MarioWunderl (Word-Dokument)

Michael Dobes, Mathe-Online: Evaluation aus medienkritischer und unterrichtspraktischer Sicht, TELL & CALL, April 2000, S. 34.