Winkel und Winkelmessung

F. Schweiger, Salzburg

1) Was ist ein Winkel?

In der Literatur findet man verschiedenste Definitionen für "Winkel", brauchbare und weniger brauchbare, Äquivalente und nichtäquivalente, denn es gibt, wie man bei näherem Zusehen erkennen, verschiedene Begriffe von Winkel. Diese verschiedenen Winkelbegriffe hängen, wie sich zeigen wird, mit der Art der Winkelmessung zusammen, wobei hier wieder Zusammenhänge mit den zugelassenen Abbildungen (geometrischen Transformationen) bestehen. Wir wollen, im Anschluß an die vorliegende Literatur, zunächst drei Winkelbegriffe in der Ebene aufzeigen:

a) Elementargeometrischer Winkel.

Dieser ist lokal und unorientiert; er entspricht zunächst am ehesten der landläufigen Vorstellung eines Winkels: Ein Winkel wird von zwei Geraden, zwei Ebenen, zwei Straßen, zwei Kanten etc. eingeschlossen. Ein Kind versteckt sich im hintersten Winkel des Gartens, es durchstöbert das Haus bis in den letzten Winkel; zwei Bäume stehen eng beisammen oder weit auseinander (dies bezieht sich auf unseren Schwinkel!), ein Keil ist spitz oder stumpf (wobei ein stumpfer Keil nicht unbedingt einem "stumpfen Winkel" im elementarmathematischen Sinn entsprechen muß!)

Dieser Winkelbegriff hat einen durchaus lokalen Charakter (mathematisch sind wir in der Nähe des Filterbegriffs). Es ist vielfach üblich, folgende Definition zu verwenden:

Ein Winkel (oder besser: ein Winkelfeld) ist Durchschnitt zweier Halbebenen.
Daher existiert die Umkehrfunktion

\[w^{-1} : [0, 2\pi] \rightarrow S^1 \]

Definiert man nun \(f : \mathbb{R} \rightarrow S^1 \) durch

\[f(x) = w^{-1}(y) \]

für

\[x = y + 2\pi n, \quad 0 \leq y < 2\pi, \]

so heißt jede Zahl \(x \) mit \(f(x) = (\zeta, \eta) \) ein Argument oder analytisches Bogenmaß des (goniometrischen!) Winkels, der von den Punkten \((1,0)\), \((0,0)\), \((\zeta, \eta)\) eingeschlossen wird.

Anschaulich: Läßt man das Rad \(S^1 \) auf der Geraden \(\mathbb{R}^1 \) abrollen, so berührt \((\zeta, \eta) \in S^1\) die Gerade \(\mathbb{R}^1 \) gerade in den Punkten \(x \) mit \(f(x) = (\zeta, \eta) \) und diese Punkte \(x \) liegen im Abstand \(2\pi \) äquidistant.

Man sieht hier, daß man den analytischen Winkelbegriff selbst nicht verwendet, wohl aber die Erweiterung der Winkelmessung:

Jeder goniometrische Winkel besitzt unendlich viele analytische Winkelmaße, die sich um ganzzahlige Vielfache von \(2\pi \) unterscheiden.

Definiert man sodann \(\cos x = \zeta \), \(\sin x = \eta \), so hat man eine bequeme Einführung der Winkelfunktionen als Funktionen des Bogenmaßes (nimmt man das Gradmaß, so erhält man eine andere Sinus- und Kosinusfunktion, wie am Taschenrechner deutlich erkennbar ist).

Es sei noch erwähnt, daß Freudenthal - Faur einen sogenannten analytisch-geometrischen Winkel betrachten: Ein geordnetes Paar von Geraden. Dies entspricht der Formel

\[\tan \alpha = \frac{k_1 - k_2}{1 + k_1 k_2} \]
Oder: ein Winkel ist ein Paar von Halbgeraden mit gemeinsamem Anfangspunkt.

Beide Definitionen sind brauchbar, aber es sollte uns klar sein, daß sie den intuitiven Gehalt des Begriffes "Winkel" nur bedingt wiedergeben, der "lokale" Charakter geht verloren, denn der Winkel ist ja durch einen (beliebig) kleinen Ausschnitt schon gegeben; was weit draußen im Durchschnitt zweier Halbgebenen geschieht, interessiert niemand, statt des Paares zweier Halbgeraden würde ein Paar von Strecken mit gemeinsamem Anfangspunkt genügen. In der höheren Mathematik erklärt man ja dann auch den Schnittwinkel zweier Kurven durch den Schnittwinkel der Tangenten, die ihrerseits durch eine beliebige Umgebung des Schnittpunktes festgelegt sind.

Der lokale Charakter dieses Winkelbegriffs fällt auch im Dreieck auf. Charakterisiert wird
ja durch den Winkel bei A eine Eigenschaft der "Ecke" des Dreiecks (und nicht eine Eigenschaft von Halbseiten etc.).

Der elementargeometrische Winkelbegriff ist unorientiert: Die beiden Halbseiten sind gleichberechtigt, die zwei Halbgeraden werden als ungeordnetes Paar betrachtet. Gemessen wird dieser Winkel mit einem Halbkreis, d.h. mit einem Winkelmesser etwa von 0° bis 180° bzw. 0 bis π. Auf einige Fragen des Messens soll dabei später eingegangen werden. In der analytischen Geometrie entspricht ihm die Formel

\[\cos \alpha = \frac{\mathbf{r}_1 \cdot \mathbf{r}_2}{\|\mathbf{r}_1\| \|\mathbf{r}_2\|} \]

(wobei \(\cos\) als Funktion auf dem Intervall [0,\(\pi\)] bzw. [0, 180°] aufgefaßt wird).

Vertauschung von \(\mathbf{r}_1\) und \(\mathbf{r}_2\) spielt keine Rolle! Auch Spiegelung an einer Geraden läßt diesen Winkel unverändert.

b) Goniometrischer Winkel.

Will man mit Halbseiten arbeiten, so müßte man die Vereinigung
(oder das Komplement des Durchschnittes) zweier Halbgegenden hinzunehmen, um zu überstumpfen Winkeln zu gelangen, aber sehr elegant ist das nicht, und die sich anbahrende Orientierung der Ebene geht verloren. Der goniometrische Winkel wird entweder von 0° bis 360° bzw. 0 bis 2π gemessen oder von -180° bis $+180^\circ$ bzw. $-\pi$ bis $+\pi$. Man beachte, daß diese beiden verschiedenen Messungen zwei konkurrierenden (gleichwohl mathematisch äquivalenten) Vorstellungen entsprechen.

Im ersten Fall wird eine Drehrichtung in der Ebene festgelegt und der Winkel so gemessen, daß die erste Halbgerade in der festgelegten Drehrichtung in die zweite Halbgerade gedreht wird. Hier treten überstumpfe Winkel auf!

Im zweiten Fall wird ebenfalls eine Drehrichtung festgelegt, aber der Winkel so gemessen, daß man die (als) erste (angesehene) Halbgerade in oder entgegen der festgelegten Drehrichtung, aber auf kürzestem Weg in die zweite Halbgerade dreht. Hier treten keine überstumpfen Winkel auf. Diese Messung ist (obwohl sie zu negativen Maßzahlen greift) sehr tief verankert: Man fährt an der ersten Ampel nach links und dann die zweite Straße rechts.

Niemand würde sagen: bei der ersten Ampel 90° und dann die zweite Straße 270°.

In der analytischen Geometrie benötigt man die beiden Formeln

$$\cos \alpha = \frac{\mathbf{r}_1 \cdot \mathbf{r}_2}{\|\mathbf{r}_1\| \|\mathbf{r}_2\|} \quad \sin \alpha = \frac{\det(\mathbf{r}_1, \mathbf{r}_2)}{\|\mathbf{r}_1\| \|\mathbf{r}_2\|}$$

um den Winkel modulo 2π festzulegen! Die Formel für $\sin \alpha$ ist
sensibel gegenüber Vertauschung und Spiegelung an einer Geraden.

Ist es 10 Uhr, so zeigt die gespiegelte Uhr 2 Uhr. Die orientierte Ebene gestattet nur lineare Abbildungen mit Determinante > 0.

c) Analytischer Winkel.

Der analytische Winkel hat mehrere Quellen und Ursachen, die zusammenwirken: Die stetige Fortsetzung einer Drehung führt zu ihm! Denn eine Drehung um 360° ist ein "Ereignis", welches von der identischen Abbildung, d.h. der Drehung um 0° verschieden ist. Als Abbildung im Sinne des mengentheoretischen Abbildungsbegriffes ist eine Drehung um 360° ebenfalls die identische Abbildung, aber wenn man den Drehvorgang betrachtet, die Bahn eines Punktes oder die von einem Punkt im Laufe einer Umdrehung zurückgelegte "Winkelsumme" misst (eine Prätisierung dieses Begriffes wird durch die Windungszahl gegeben), so gibt es sehr wohl einen Unterschied! Überlagert man den goniometrischen Winkelbegriff mit der additiven Gruppe der ganzen Zahlen (d.h. zählt man die Anzahl der Drehungen rechts bzw. links herum), so erhält man den analytischen Winkel: Ein analytischer Winkel ist ein geordnetes Paar von Halbgeraden zusammen mit einer ganzen Zahl, die eine Anzahl von Drehungen misst!

Das Maß eines analytischen Winkels ist daher zunächst ein geordnetes Paar \((w(\alpha), z)\), wo \(0 < w(\alpha) < 2\pi\), wenn man den Winkel im Bogenmaß misst (bzw. \(0 \leq w(\alpha) < 360\) im Gradmaß), und \(z\) eine ganze Zahl ist. Die Abbildung

\[(w(\alpha), z) \rightarrow z + w(\alpha)\]
bildet alle Winkelmaße analytischer Winkel bijektiv auf \mathbb{R} ab. Eine weitere Quelle des analytischen Winkelbegriffes ist die Erweiterung der Additivität des Winkelmaßes "im Kleinen". Schon die Winkelmaße "kleiner" elementargeometrischer Winkel genügen der Bedingung

$$w(\alpha + \beta) = w(\alpha) + w(\beta)$$

Dabei bedeutet $\alpha + \beta$ das Aneinanderlegen zweier Winkel. Durch fortgesetztes Aneinanderlegen entstehen bald Winkelmaße über 180° bzw. 360°.

Dabei stößt man auf Grenzen!
Zwei 60°-Winkel aneinandergelegt ergeben einen Winkel von 120°.

Aber sechs 60°-Winkel aneinandergelegt? Kann man da überhaupt von Winkel sprechen? Ein Tortenstück beschreibt einen Winkel, aber die ganze Torte?

Andererseits ist es sinnvoll zu sagen, die Winkelsumme im Viereck ist 360° (und nicht 0°), die Winkelsumme im Fünfeck ist 540° (und nicht 180°). Letztlich sind es die Winkelfunktionen selbst, die eine Erweiterung des Winkelmaßes fordern. Denn, beschreibt

$$x(t) = \sin \omega t$$
eine harmonische Schwingung, so ist eine Einschränkung von t auf $[0, \frac{2\pi}{\omega}]$ nicht sinnvoll. Die Erweiterung des Winkelmaßes ist etwa so vorzunehmen: Ist

$$w : S^1 \rightarrow [0, 2\pi]$$
die Funktion, die jedem Punkt $(\xi, \eta) \in S^1$ die Bogenlänge des Kreisbogens von $(1,0)$ nach (ξ, η), gegen den Uhrzeigersinn durchlaufen, zuordnet, so ist w bijektiv.
2. *Winkelmessung*

Eine Motivation des Messens kann gegeben werden durch die Ungenauigkeit qualitativer Angaben ("Wie weit rechts?" "In welcher Richtung?") und durch die Notwendigkeit, Situationen oder Ortsangaben festzulegen, in einer Skizze, in einem Protokoll, damit eine Rekonstruktion später oder eine Nachrichtenübermittlung per Funk oder Telefon möglich sind. Hier sollten geschickt gewählte motivierende Aufgaben nicht fehlen!

Die Winkelmessung im Bogenmaß beruht auf einem etwas anderen Prinzip: Das Bogenmaß des Winkels ist das Verhältnis von Bogenlänge zu Radius in einem Kreissektor (Tortenstück).

Der zweite wesentliche Punkt ist, daß es keine beliebig großen Winkel gibt (solange man den analytischen Winkel nicht hat!):

Man kommt mit der Skala 0° bis 180° bzw. 0° bis 360° aus. Ist ein beliebiger Kreissektor gegeben, so kann man damit durch Aneinanderlegen in endlich vielen Schritten den Vollwinkel auslegen bzw. Überschreiten.

Zuletzt sei erwähnt, daß die Frage der Berechnung von Winkelmaßen ein weiteres Problemfeld einschließt.

3. Vergleich der Strukturen \(S^1 \) und \(R^1 \)

Zuletzt sei es gestattet, das Augenmerk auf zwei fundamentale Strukturen zu legen, auf den Einheitskreis \(S^1 \) und die reelle Gerade \(R^1 \). Dabei ist es oft bequem, \(S^1 \) als Menge aller komplexen Zahlen \(\alpha \) mit \(|\alpha| = 1 \) aufzufassen. \(S^1 \) und \(R^1 \) sind topologische Räume: \(S^1 \) ist kompakt (dies entspricht der Tatsache, daß es geometrisch gesehen keine "beliebig großen" Winkel gibt), \(R^1 \) ist
nicht kompakt (es gibt beliebig lange Strecken). Beide Räume sind zusammenhängend. Entfernt man aus \(S^1 \) einen Punkt, so bleibt der Raum zusammenhängend. Entfernt man aber aus \(\mathbb{R}^1 \) einen Punkt, so zertällt die Gerade. \(\mathbb{R}^1 \) ist (bezüglich des "Kleinergleich") eine linear geordnete Menge, \(S^1 \) hingegen kann in keiner "natürlichen" Weise linear geordnet werden. Genauer etwa so: die lineare Ordnung in \(\mathbb{R}^1 \) verträgt sich mit der Addition (aus \(x \leq y \) folgt \(x+z \leq y+z \)), hingegen kann man \(S^1 \) nicht so linear ordnen, so daß man Verträglichkeit mit der Multiplikation erhält (d.h., daß aus \(a \leq b \) folgt \(a \cdot y \leq b \cdot y \)). Denn ist etwa

\[
(1) \quad i \leq 1,
\]

so folgen (Multiplikation mit \(i \)) nacheinander

\[
(2) \quad -1 \leq i \\
(3) \quad -i \leq -1 \\
(4) \quad i \leq -i
\]

Aus (1) und (4) folgt \(i \leq -i \), aus (2) und (3) folgt \(-i \leq i \), ein Widerspruch!

\(S^1 \) und \(\mathbb{R}^1 \) sind (wie zuvor schon angedeutet) abelsche Gruppen: \(S^1 \) bezüglich der Multiplikation, \(\mathbb{R}^1 \) bezüglich der Addition. Die Abbildung

\[
\varphi: \mathbb{R}^1 \rightarrow S^1, \quad t \mapsto \cos 2\pi t + i \sin 2\pi t,
\]

liefert einen stetigen Homomorphismus (Additionstheoreme der Winkelfunktionen!). Beide Strukturen sind teilbare abelsche Gruppen, d.h. die Gleichung \(a^n = 1 \) bzw. \(nx = 1 \) ist in \(S^1 \) bzw. \(\mathbb{R}^1 \) für jedes \(n \) lösbar. Ist \(n \) eine natürliche Zahl, so bildet

\[
\left\{ \frac{z}{n} : z \in \mathbb{Z} \right\}
\]

eine diskrete Untergruppe von \(\mathbb{R}^1 \), die durch \(\varphi \) auf eine diskrete Untergruppe von \(S^1 \), den Ecken eines regelmäßigen \(n \)-Ecks, abgebildet wird. Übrigens sind alle diskreten Untergruppen von \(\mathbb{R}^1 \) untereinander isomorph. Dafür sind die diskreten Untergruppen von \(S^1 \) alle endlich. Der Tatsache, daß man jede Strecke bzw. jeden Winkel "messen" kann, entspricht, daß \(S^1 \) und \(\mathbb{R}^1 \)
beides vollständige metrische Räume sind (wobei im \mathbb{R}^1 das archimedische Axiom hinzutritt). Eine weitere Kontrastierung erhält man, wenn man bedenkt, daß die Gerade \mathbb{R}^1 in der Ebene \mathbb{R}^2 ein schönes zweidimensionales Analogon besitzt, hingegen der Kreis S^1 zwei wesentlich verschiedene zweidimensionale Verallgemeinerungen aufweist: die Kugelfläche S^2 und der Torus $S^1 \times S^1$, wobei sich die Kugelfläche S^2 als bedeutend verschieden erweist!

4. Einige Literaturhinweise

F. Denk: Elementare Fragen des Trigonometrieunterrichts. Der Mathematikunterricht, Jg. 14, Heft 1, 5-27 (1968)

Univ. Prof. F. Schweiger

Institut für Didaktik der Naturwissenschaften

Universität Salzburg, 5020, Petersbrunnstr. 19