15. ÖMG-Kongress
Jahrestagung der Deutschen Mathematikervereinigung

16. bis 22. September 2001 in Wien

Sektion 11 - Numerische Mathematik, Wissenschaftliches Rechnen
Dienstag, 18. September 2001, 17.30, Hörsaal 47


Sharply Localized $ L_\infty$ Estimates for Mixed Finite Element Methods

Alan Demlow, Cornell University

Schatz [1] has recently proven sharply localized, or weighted, maximum norm estimates for Galerkin methods on unstructured meshes. These estimates generalize previous maximum norm stability results by showing that the higher the order of polynomial used in a Galerkin method, the more local the resulting approximation. We present analogous results for a mixed method for linear elliptic problems. Our estimates are valid for the vector variable, scalar variable, and a superconvergent postprocessed approximation to the scalar variable, and hold for all of the typical element spaces used in this context. We also comment on the best choice of element space. In particular, our estimates indicate that the lowest order Raviart-Thomas elements give a localized approximation to the vector variable. In contrast, the lowest order Brezzi-Douglas-Marini (BDM) elements approximate the vector variable to one higher order than the Raviart-Thomas elements but do not appear to yield a localized approximation.

[1] Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I. Global estimates. Math. Comp. 67 (1998), no. 223, 877-899.

E-Mail: demlow@math.cornell.edu
Homepage: www.math.cornell.edu/~demlow

Zeitplan der Sektion   Tagesübersicht   Liste der Vortragenden