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FUNKTIONENTHEORIE - EINE MATHEMATISCHE ENTDECKUNG

Das 19. Jahrhundert war geprägt von Forschungen und Entwicklungen, die bis heute Spuren hinter-
lassen haben. Wir nennen nur einige Beispiele, wie die Entdeckung und Nutzung elektromagneischer
Wellen (Funk, Radio, später Fernsehen und Handys), das Experiment von Michelson, das zur Entwick-
lung der Relativitätstheorie führte, und die Entdeckung der Radioaktivität. Technologisch sei erinnert
an den Bau von Dampfmaschinen und Motoren, der Industrie und Alltag veränderte. Auch die Kul-
turwissenschaften machten große Fortschritte, etwa die Entzifferung der Hieroglyphen, die Ausgra-
bungen in Troja und an anderen Stätten und die Entdeckung der indoeuropäischen Sprachfamilie, die
zeigte, dass Bengali und Isländisch verwadte Sprachen sind. Diese Entdeckungen und Forschungen
sind weitgehend im Wissen vieler Menschen präsent. Aber was hat die Mathematik im 19. Jahrhundert
gebracht?

Dieser Aufsatz versucht ein Forschungsgebiet vorzustellen, das Funktionentheorie genannt wurde. Die
Mathematiker Augustin-Louis CAUCHY (1789–1857), Georg Friedrich Bernhard RIEMANN (1826–
1866) und Karl WEIERSTRASS (1815–1897) sind hier zu nennen. Nötig ist nur die Kenntnis der Be-
griffe Differenzierbarkeit, Konvergenz und der komplexen Zahlen C.

Eine reelle Funktion f :]a, b[→ R ist differenzierbar im Punkt x0 ∈]a, b[, wenn es eine affin-lineare
Funktion t(x) = a(x− x0) + f(x0) mit folgender Eigenschaft gibt: Zu jedem ε > 0 gibt es ein δ > 0,
so dass aus |x−x0| < δ folgt |f(x)− t(x)| ≤ ε|x−x0|. Dann nennt man a die (erste) Ableitung von f

im Punkt x0. Man kann auch definieren a = limx→x0

f(x)−f(x0)
x−x0

. Die Ableitung a wird als f ′(x0) oder
df
dx
(x0) geschrieben.

Nun ersetze man die reellen Zahlen R durch die komplexen Zahlen C. Eine Teilmenge G von C ist
offen, wenn es zu jedem Punkt z0 ∈ G eine Kreisscheibe mit Mittelpunkt z0 und Radius ρ > 0 gibt,
die in G liegt. Man betrachtet dann eine offene Teilmenge G ⊆ C und eine Funktion f : G → C,
die jeder Zahl z = x + iy ∈ G eine Zahl w = u(x, y) + iv(x, y) zuordnet. Die Funktion f ist im
Punkt z0 = x0+ y0 differenzierbar, wenn es eine affin-lineare Funktion t(z) = α(z− z0)+ f(z0), α =
a + ib gibt mit der Eigenschaft: Zu jedem ε > 0 gibt es ein δ > 0, so dass aus |z − z0| < δ folgt
|f(z) − t(z)| ≤ ε|z − z0|. Dann heißt α = f ′(z0) = df

dz
(z0) die (erste ) Ableitung von f im Punkt

z0 = x0 + iy0.

Zwei Annäherungen sind bemerkenswert, nämlich bei festem y0 der Weg x → x0 und bei festem x0

der Weg y → y0. Im ersten Fall erhält man

|f(z)− (a+ ib)(x− x0)− f(z0)|
= |u(x, y0)− a(x− x0)− u(x0, y0) + i(v(x, y0)− b(x− x0)− v(x0, y0))| ≤ ε|x− x0|.

Daraus folgen die Ungleichungen

|u(x, y0)− a(x− x0)− u(x0, y0)| ≤ ε|x− x0|, |v(x, y0)− b(x− x0)− v(x0, y0)| ≤ ε|x− x0|.



Das bedeutet, dass die Funktionen x → u(x, y0) und x → v(x, y0) reell differenzierbar sind, und man
schreibt

a =
∂u

∂x
(x0, y0), b =

∂v

∂x
(x0, y0).

Die Schreibweise ∂ statt d wird als partielle Ableitung bezeichnet, da die zweite Variable y unverändert
bleibt. Im zweiten Fall (man beachte i2 = −1) erhält man die Ungleichungen

|u(x0, y) + b(y − y0)− u(x0, y0)| ≤ ε|y − y0|, |v(x0, y)− a(y − y0)− v(x0, y0)| ≤ ε|y − y0|.
Daher ist

a =
∂v

∂y
(x0, y0), b = −∂u

∂y
(x0, y0).

Daraus folgen die Gleichungen
∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0),

die als Gleichungen von Cauchy und Riemann bekannt sind. Das verlockt gerade zu, Beispiele zu
rechnen:

(1) f(z) = z3 = x3 − 3xy2 + i(3x2y − y3). Dann ist ∂u
∂x

= 3x2 − 3y2 = ∂v
∂y
, ∂u
∂y

= −6xy = − ∂v
∂x
.

(2) f(z) = 1
z
= x

x2+y2
− i y

x2+y2
. Dann ist ∂u

∂x
= −x2+y2

(x2+y2)2
= ∂v

∂y
, ∂u
∂y

= − 2xy
(x2+y2)2

= − ∂v
∂x
.

Eine Funktion f : G → C wird analytisch genannt, wenn zu jedem Punkt z0 ∈ G einen Radius R > 0
gibt (es ist auch R = ∞ zugelassen. ), so dass für alle z ∈ G mit 0 ≤ |z − z0| < R die Gleichung

f(z) =
∞∑
n=0

an(z − z0)
n

erfüllt ist. Die Reihe rechts wird eine Potenzreihe genannt. Jede Polynomfunktion p(z) =
∑N

n=0 anz
n

ist auf G = C analytisch. Die Funktion f(z) = 1
z

ist auf G = C \ {0} analytisch, denn

1

z
=

1

z0 + z − z0
=

1

z0

∞∑
n=0

(
z − z0
z0

)n

ist für |z − z0 < | < |z0|, d.h. R = |z0|, konvergent.

Vertraut man darauf (wie zu Eulers Zeiten üblich), dass man eine Potenzreihe gliedweise differenzieren
darf (was man beweisen kann), so erhält man für die k-te Ableitung

fk(n)(z) =
∑
n=0

ann(n− 1) · · · (n− k + 1) (z − z0)
n−k.

Setzt man hier z = z0, so ergibt sich die schöne Formel

ak =
f (k)(z0)

n(n− 1) · · · (n− k + 1)
.

Da diese Formel auch für Polynome gilt, kann sie vielleicht schon für manchen bekannt sein.

Bemerkenswert war aber folgendes Ergebnis: Ist f : G → C auf der offenen Menge G differenzierbar,
so ist sie eine auf G analytische Funktion. Dieses Ergebnis war nicht leicht zu beweisen, hat aber dazu
beigetragen, dass diese Funktionen als besonders „schöne“ Funktionen empfunden wurden, sodass die
Theorie dieser besonderen differenzierbaren Funktionen oft einfach Funktionentheorie genannt wurde!

Im reellen Bereich ist es möglich, dass die die Ableitung einer differenzierbaren Funktion nicht mehr
in allen Punkten differenzierbar ist. Das einfache Beispiel f(x) = x2 für x ≥ 0 und f(x) = −x2 für
x ≤ 0 zeigt dies. Die Funktion f ′(x) ist im Punkt x = 0 nicht differenzierbar.



Wie gesagt, der Beweis ist nicht ganz leicht und erfordert den Begriff des Kurvenintegrals. Sei γ(t) =
x(t) + iy(t), 0 ≤ t ≤ 1 eine differenzierbare Kurve im Gebiet G, so setzt man∫

γ

f(z)dz =

∫ 1

0

f(γ(t)) γ̇(t)dt.

Hier ist γ̇(t) = ẋ(t) + iẏ(t), und die Ableitung nach der Variablen t (steht für lat. tempus, „Zeit“) wird
durch einen darüber gesetzten Punkt geschrieben.

Man erreicht nach vielen Mühen die Integralformel von Cauchy: Ist die Funktion f auf G differenzier-
bar und κ(t) = z0 + r(cos 2πt+ i sin 2πt), so dass alle Punkte z mit |z − z0| ≤ r im von κ begrenzten
Kreis und in G liegen, so gilt für diese Punkte z die Formel

f(z) =
1

2πi

∮
κ

f(w)dw

w − z
.

Es ist üblich, bei geschlossenen Kurven (hier κ(0) = κ(1)) das Zeichen
∮

zu verwenden. Wenn man
wiederum die Vertauschung von Reihe und Integral erlaubt, ist es leicht zu sehen, dass die Formel von
Cauchy für analytische Funktionen richtig ist. Man benötigt dazu∮

κ

dw

w − z0
= 2πi und

∮
κ

(w − z0)
ndw = 0,

denn (z−z0)n+1

n+1
ist die Stammfunktion von (z − z0)

n und die Kreislinie κ eine geschlossenen Kurve.
Die erste Gleichung ist ebenfalls leicht zu zeigen, denn∮

κ

(z − z0)
ndw =

∫ 1

0

2π(− sin 2πt+ i cos 2πt)

cos 2πt+ i sin 2πt
dt = 2πi.

Sei f(z) =
∑∞

n=0 an(z − z0)
n, dann erhält man

an =
f (n)(z0)

n!
=

1

2πi

∮
κ

f(w)dw

(w − z0)n+1
.

Die Formel von Cauchy gilt aber für differenzierbare Funktionen und zeigt, dass diese analytisch sind.
Es ist nämlich

f(w)

w − z
=

f(w)

(w − z0)(1− z−z0
w−z0

)
=

∞∑
n=0

f(w)

(w − z0)n+1
(z − z0)

n

fast schon eine Potenzreihe. Im weiteren nehmen wir an, dass Reihenentwicklung und Integration ver-
tauschbar sind! Da eine analytische Funktion beliebig oft differenzierbar ist, sind auch die Funktionen
u = u(x, y) und v = v(x, y) beliebig oft diefferenzierbar. Daher folgt aus den Cauchy-Riemannschen
Gleichungen

∂2u

∂x2
=

∂2v

∂y∂x
=

∂2v

∂x∂y
= −∂2u

∂y2
.

Daraus und analog folgen die Gleichungen
∂2u

∂x2
+

∂2u

∂y2
= 0,

∂2v

∂x2
+

∂2u

∂y2
= 0.

Das kann der Anlass sein, weitere Übungsaufgaben zu rechnen.1

F. Schweiger

1Diese Darstellung ist als Beispiel für Mathematik im Expository Style zuverstehen, ein Versuch, mathematische Inhalte
verständlich zu machen (dazu F. Schweiger, Mathematik im Expository Style. In: Karl Josef Fuchs (Hg.) Fachdidaktische
Studien II. Aachen 2016: Shaker Verlag).


