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Abstract

Diese Arbeit befasst sich mit der mathematischen Modellierung der Ausbreitung

von Infektionskrankheiten. Infektionskrankheiten sind Krankheiten, die von Er-

regern verursacht werden und sich von Individuum zu Individuum verbreiten können.

Laut der Weltgesundheitsorganisation (WHO) sind 23% aller Todesfälle des Jahres

2012 auf Infektionskrankheiten zurückzuführen. Das Modellieren von Infektion-

skrankheiten ist Teil der Epidemiolgie. Gewonnene Informationen können verwendet

werden, um Epidemien vorherzusagen und Gegenmaßnahmen zu evaluieren.

Zuerst wird das SIR Modell vorgestellt. Dabei wird die Population in drei Grup-

pen aufgeteilt: die Gesunden, die Infizierten und die nicht mehr Infizierten. Die

nicht mehr Infizerten sind Individuen, die verstorben oder gesund und dadurch im-

mun geworden sind. Das SIR Modell beschreibt, wie sich die Größe dieser Gruppen

über die Zeit verändert. Danach werden zwei Variationen des Modells beschrieben.

Die erste Variation erlaubt die Modellierung von Inkubationszeiten, indem zum

Beispiel die Infektionsrate davon abhängt, wie lange ein Individuum schon krank

ist. Dieses Modell wird daraufhin zur Simulation einer Masern-Epidemie verwen-

det. Diese Simulation basiert auf Daten der WHO. Die zweite Variation des SIR

Modells inkludiert Geburts- und Sterbeprozesse. Für die betrachteten Modelle wer-

den die Gleichgewichte und deren Stabilität berechnet. Die Modelle werden mit der

Programmiersprache R durch Differnzengleichungen berechnet.
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Essentially, all models are wrong,

but some are useful

George E. P. Box (1919-2013)

1. Introduction

In 2012 23% of all deaths worldwide were caused by infectious diseases (WHO

| The top 10 causes of death, n.d.). Infectious diseases are diseases caused by

pathogens that are spread from individual to individual. The pathogens are mi-

croorganisms such as, for example, bacteria, viruses, fungi and parasites. Recovery

from disease caused by certain pathogens results in permanent immunity to the dis-

eases (Palm & Medzhitov, 2009).

Modelling the spread of infectious diseases is part of the field of epidemiology. The

World Health Organization (WHO) defines epidemiology as ”...the study of the dis-

tribution and determinants of health-related states or events (including disease), and

the application of this study to the control of diseases and other health problems.”

(WHO | Epidemiology , n.d.).

Multiple models have been derived to simulate the spread of infectious diseases.

In agent-based models, every single individual and its interactions are simulated.

Compartment models on the other hand only consider the amount of, for example,

healthy, infected and recovered individuals. Furthermore, the models can be divided

into stochastic and deterministic models. Deterministic models have a unique so-

lution for a specific set of parameters, while stochastic models include at least one

random variable. Models can be of differing complexity, some include vital dynamics

as birth and death rates (Hethcote, 1976), public health interventions (Riley et al.,

2003), vaccination programs (Shulgin, Stone, & Agur, 1998) and seasonal changes

(Stone, Olinky, & Huppert, 2007).

Information gained by the modelling of the spread of infectious diseases is used

to predict epidemics and pandemics (Fraser et al., 2009; Legrand, Grais, Boelle,

Valleron, & Flahault, 2007) and to evaluate tactics to prevent or stop epidemics and

pandemics, for example with vaccination programs (Shulgin et al., 1998; Bernoulli

& Blower, 2004) or with public health interventions (Riley et al., 2003).

The remainder of this paper is structured as follows: In Section 2, a classical, basic

dynamic model and two of its variations are introduced. With one of these models

a measles is simulated. In the third section, equilibria are calculated for the models

and their stability is analyzed. In the fourth section, numerical examples for the
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models are given. The paper finishes with a discussion. Programs used for the com-

putations are written in the programming language R (R Core Team, 2015) and are

included in the appendix. Only equations that are referred to later on in the paper

are numbered.
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2. SIR models to describe the time course of infections in a

population

2.1. The basic SIR model

The SIR model divides the population into three disjoint groups or compartments,

consisting of

• susceptible (S),

• infected (I) and

• removed (R)

individuals.

Individuals in the S-compartment can be infected by the disease when meeting

infected individuals. If they are infected, they are moved to the I-compartment.

The individuals in the I-compartment are infected and are contagious. They can

infect individuals in the S-compartment. If individuals from the I-compartment

recover or die, they are moved to the R-compartment. The R-compartment contains

individuals that have recovered from the disease or have died. They are permanently

immune and not contagious. The state variables St, It and Rt denote the number

of susceptible, infected and removed individuals at time t = 0, 1, 2, . . .. The total

size of the population is N = St + It + Rt. If N = 1 the size of the state variables

can be interpreted as the relative frequency of susceptible, infected and removed

individuals.

There are two ways to look at this model: With discrete time and continuous

time. Discrete time means that time is divided into steps, for example hours, days

or weeks. Infection and recovery only occurs at those steps. In the continuous time

model time progresses continuously. In this paper only discrete time models are

considered. The basic SIR model described here is a discrete time version of the

continuous time model in (Ma, 2009). It is a general model which is able to model

the basic epidemic dynamics of infectious diseases. For this model the following is

assumed:

• An individual becomes contagious one time step after infection and continues

being so until it is removed.

• All infected individuals have the same probability to recover; the recovery

rate is therefore not influenced by how long an individual has been infected.

The earliest an infected individual can recover is one time step after infection.

Consider a specific susceptible and infected individual. Let β denote the prob-

ability that the two meet and the susceptible individual becomes infected. There
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are StIt possible pairs of susceptible and infected individuals. Therefore the number

of newly infected individuals is given by StItβ. We assume that the probability of

two specific individuals meeting is indirectly proportional to the population size N .

This is the case if, for example, individuals meet at random.

Let γ be the recovery rate. It is defined as the probability for an infected individual

to recover and become immune during one time step. The number of newly recov-

ered individuals per unit of time is the product of γ and the number of infected

individuals It. Resulting from this the difference equations for the basic SIR model

can be derived:

St+1 − St = −StItβ

It+1 − It = StItβ − Itγ(1)

Rt+1 −Rt = Itγ

Note that the population size N = St + It + Rt always remains constant. The flow

of individuals from compartment to compartment can be visualized with the flow

diagram in Figure 1. An R program to calculate results for this model can be found

in Appendix A.

S I R
SIβ Rγ

Figure 1. A flow diagram illustrating the movement of individuals

between the compartments for the basic SIR model (1).

2.2. A SIR model with changing infection and recovery rates

Models with changing infection and recovery rates allow to model diseases with

incubation times. In the first part of this section the general model is discussed, in

the second part a special case simulating a measles epidemic is considered.

2.2.1. Description of the model

Kermack and McKendrick proposed a model with changing infection and recovery

rates (Kermack & McKendrick, 1927). In this model the infection and the recovery

rate for each individual depends on the time an individual has been infected. This is

achieved by creating a separate subcompartment for each time step which includes

all newly infected individuals and defining a specific infection and recovery rate for

each subcompartment.

For example the subcompartment It,θ denotes the number of infected individuals at
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time t that have been infected for θ = 0, 1, 2, . . . time steps. Thus, after n time steps

It,θ becomes It+n,θ+n. This model is represented by the flow diagram in Figure 2.

S


I0,0

I1,0 I1,1

I2,0 I2,1 I2,2

I3,0 I3,1 I3,2 · · ·


R

Figure 2. A flow diagram for a SIR model with incubation times

and changing recovery rates showing the different subcompartments.

Each letter represents a compartment. S is the compartment of sus-

ceptible individuals. If a susceptible individual is infected at a time

step t it moves to the It,0 compartment. It includes only the newly

infected individuals at the time step t. At each time step t some in-

dividuals from the compartments It,θ can be removed (if they recover

or die). All remaining individuals move from the compartments It,θ

to the compartments It+1,θ+1. If an infected individual is removed, it

is moved to the compartment R.

Let γθ denote the removal rate for the individuals infected for θ time steps. Then

the number of removed individuals from one subcompartment changes at each time

step according to

It+1,θ+1 − It,θ = −It,θγθ.

When considering n time steps the number of removed individuals in one subcom-

partment is

It+n,θ+n − It,θ = −
n∑
i=0

It+i,θ+iγθ+i.

The total number of newly recovered individuals from all subcompartments at time

t+ 1 is given by

Rt+1 −Rt =
t∑

θ=0

It,θγθ.

The number of susceptible individuals at a time step t is equal to the size of the

total population N minus the number of all individuals that have ever been infected.

Note that all individuals that are removed, were infected at some point in time such
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that

St = N −
t∑
i=0

Ii,0.

Note that this equation is only true if no individuals obtain immunity by other

means than recovery from infection. To calculate It,0, the number of newly infected

individuals at time t, the varying infection rate must be taken into account. This

results in the equation

It+1,0 = St

t∑
θ=0

It,θβθ ,

where βθ denotes the infection rate for the individuals infected for θ turns. Thus,

the number of newly infected individuals at any time step t+ 1 is the product of the

number of susceptible individuals at the time point t and the sum of the number of

infected individuals in each subcompartment multiplied by their specific infection

rate βθ. This leads to the model equations

St+1 − St = −St
t∑

θ=0

It,θβθ

It+1 − It = St

t∑
θ=0

It,θβθ −
t∑

θ=0

It,θγθ(2)

Rt+1 −Rt =
t∑

θ=0

It,θγθ,

where It denotes the total number of infected individuals at a time step t, disregard-

ing the time they have been infected already. An R program to calculate results for

this model can be found in Appendix B.

2.2.2. Modelling a measles epidemic

Measles is an infectious disease that is highly contagious. It is caused by the

measles virus and killed about 132, 200 people worldwide in 2015. There is a vaccine

for measles. In 2015 85% of infants worldwide were vaccinated. The vaccination

program has resulted in a reduction of 79% in measle deaths in comparison to the

year of 2000 (WHO | Measles , n.d.).

Measles has an incubation time of about 10 days. After the incubation time the

infected individuals develop a high fever which lasts for 4 to 7 days. About 14

days after the infection a distinctive rash develops which lasts around 6 days (WHO

| Measles , n.d.). We say an individual is ”removed” if it either recovers and is

permanently immune or dies. In this model both the recovered and the deceased

individuals are in the removed compartment.
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Here a measles epidemic is modeled with a a SIR model with changing infection

and recovery rates (2). Hours are used as time steps for the difference equations,

therefore all constants are given as rates per hour.

For this simulation typical parameters for simulating the spread of measles are used:

During the incubation time of 10 days (240 hours) the recovery rate is γ = 0 and

infection rate is β = 0. When the fever breaks out in the individual, the infection

rate is β = 0.21/N (Shulgin et al., 1998; Engbert & Drepper, 1994) and the removal

rate is γ = 0. When the rash develops around 14 days after the infection, the

infection rate drops to β = 0/N because the disease is likely to be recognized and

the contact to other individuals will be restricted.

The length of the incubation time is modeled with a normal distribution with a mean

of 240 hours and a standard deviation of 12 hours. The appearance of the rash 4

days after the fever is therefore also normally distributed with a mean of 336 hours

and a standard deviation of 12 hours. Furthermore, the length of the disease is also

normally distributed with a mean of 396 hours and a standard deviation of 18 hours.

The mean and the standard deviation were chosen such that the time intervals given

for different the stages of the disease in (WHO | Measles , n.d.) have a length of four

standard deviations such that the time of the occurrence of the stage of the illness

lies inside the interval for about 95% of the individuals. The resulting infection rate

over time βθ and the average length of the illness is visualized in Figure 3.

Two scenarios are considered. In the first scenario (left graph of Figure 4), most

individuals are susceptible few are infected and none are removed. In the second

scenario (right graph of Figure 4), the vaccination rate is considered. Around 85%

of the population is vaccinated and the vaccine grants immunity in around 95% of

vaccinated individuals. This number depends on the age at which the individual

was vaccinated and whether the individual received one or two doses of the vaccine

(World Health Organization, 2009). The relative frequency of susceptible individ-

uals is represented by the green line, the red line represents the relative frequency

of infected individuals and the blue line shows the relative frequency of removed

individuals over time.

In the first scenario, the disease quickly spreads and the entire susceptible popu-

lation is used up. Eventually, the disease dies out due to the lack of susceptible

individuals and the entire population becomes removed.

Since measles is a very infectious disease even the high vaccination rate in the sec-

ond scenario is not high enough to stop the spread of the disease. In the second

scenario the disease spreads slower than in the first and takes longer to die out. The
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Figure 3. The left graph shows the infection rate βθ for an individual

over the course of its infection. During the incubation time βθ = 0

after the incubation time the infection rate rises up to βθ = 2.1. When

the rash develops around 14 days after the infection and the disease

is recognized the infection rate falls back to βθ = 0. The right graph

shows a density function illustrating the average time after infection

after which an infected individual recovers. The graphs were created

with the R program in Appendix B.

entire susceptible population is used up and the disease dies out leaving a totally

removed population. The WHO states that 95% of the population in each district

must be vaccinated with two doses of the vaccines against measles to prevent an

epidemic (World Health Organization, 2009). Modelling a measles epidemic with

95% removed individuals confirms this statement.

In (Shulgin et al., 1998; Engbert & Drepper, 1994) a separate birth and death pro-

cess is additionally considered but since the birth and death rate is only 0.000002

and has practically no impact on the dynamic, it is dropped here for simplicity.

Furthermore, the incubation time in (Engbert & Drepper, 1994) is simulated using

the SEIR model which is an extension of the SIR model with an additional com-

partment for the individuals in the incubation period. The model with changing

infection and recovery rates is more flexible for simulating this incubation period. It

allows for a variation of specific incubation times and times of removal. The SEIR

model on the other hand uses the average probability of the disease breaking out in

an individual in the incubation period (compartment E) and the average probability

of an infected individual being removed. This is a simplification and is therefore less

accurate.
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Figure 4. The left graph shows the first scenario with 99.5% suscep-

tible, 0.5% infected and 0% removed individuals at the start of the

epidemic. The right graph shows the second scenario where 85% of

the population is vaccinated. At the start there are 18.75% suscepti-

ble 0.5% infected and 80.75% removed individuals. In both graphs the

disease is modeled with the SIR model with changing infection and

recovery rates (2). The lines represent the relative frequency of sus-

ceptible (green), infected (red) and removed (blue) individuals. The

graphs were created with the R program in Appendix B.

2.3. A SIR model with birth and death rates

Another extension of the basic SIR model includes birth and death rates. An

example of a model with birth and death rates is discussed in (Allen, 1994) and in

(Ma, 2009). It is assumed that the birth rate µ > 0 equals the death rate. Therefore

the total population size N remains constant so that St + It +Rt = N . All newborn

individuals are susceptible. This results in the following model:

St+1 − St = −StItβ + µ(N − St)

It+1 − It = StItβ − Itγ − µIt(3)

Rt+1 −Rt = Itγ − µRt = N − St+1 − It+1

The death rate is a constant and is not affected by whether an individual is infected,

susceptible or removed. In this model the removed compartment only represents

recovered individuals and not deceased ones. The deceased compartment is separate

and not modeled here since deceased individuals do not interact with the living. Note

that µ+ γ ≤ 1, for if it were greater, then the number of infected individuals could
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become negative, which is impossible. The flow of individuals from compartment

to compartment is depicted in Figure 5. An R program to calculate results for this

model can be found in Appendix C.

S I R

Nµ

Sµ Iµ Rµ

SIβ Rγ

Figure 5. Flow diagram for a SIR model with birth and death rates,

described by the equations (3), showing the flow of individuals from

compartment to compartment.
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3. Equilibria and their stability

3.1. Definition and computation of equilibria

When considering the behavior of such models it is interesting to look at equilibria.

An equilibrium is a state in which all the state variables S, I and R remain constant

over time. The number of susceptible, infected and removed individuals stays the

same.

St+1 = St

It+1 = It

Rt+1 = Rt

Consider first the basic SIR model (1) and let β > 0 and γ > 0. The equilibria and

their stability are calculated with the help of the computer algebra system Maxima

(Maxima, 2014). We show that there are only disease-free equilibria. To calculate

these equilibria we need to solve the equations

−StItβ = 0,+StItβ − Itγ = 0, Itγ = 0.

Since we defined β > 0 and γ > 0 it follows that It must be equal to 0. No indi-

viduals are infected and therefore the disease does not spread and the number of

susceptible and removed individuals remains constant.

Similarly, the equilibria for model (2) with incubation time and changing recov-

ery rates have to satisfy

−St
t∑

θ=0

It,θβθ = 0, St

t∑
θ=0

It,θβθ −
t∑

θ=0

It,θγθ = 0,
t∑

θ=0

It,θγθ = 0.

Also for this model there are only disease-free equilibria. Only susceptible and re-

moved individuals are present in the equilibria and their numbers do not change.

The model (3) with birth and death rates can have more than one equilibrium.

Equilibria for this model satisfy

−StItβ + µ(N − St) = 0, StItβ − Itγ − µIt = 0, Itγ − µRt = 0.(4)

Thus we have three equations with three unknowns, the state variables St, It and

Rt. But since we can express Rt as Rt = N − St − It we are left with only two

unknowns and three equations.

If we assume It = 0 and substitute it into the first equation we receive µ(N−St) = 0

and since µ > 0, it is clear that S = N . Thus, all individuals are susceptible and
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the disease is not present. When we assume It > 0, then StItβ − Itγ − µIt = 0

can be rearranged to St = (Itγ − µIt)/Itβ and this simplifies to St = (γ − µ)/β. If

we now substitute (γ − µ)/β for S in one of the remaining equations, for example

−StItβ+µ(N−St) = 0, we get −(γ+µ)Iβ/β+µN−µ(γ+µ)/β = 0. This simplifies

and rearranges to I = (µNβ − µ2 − µγ)/(βµ+ βγ).

As established, the set of equations (4) has two solutions,

S̄ = N

Ī = 0(5)

R̄ = 0

and

S̄∗ =
µ+ γ

β

Ī∗ =
µNβ − µ2 − µγ

βµ+ βγ
(6)

R̄∗ =
−µγ − γ2 + βγN

βγ + βµ
= N − S̄ − Ī .

The second solution is only an equilibrium if the values of all the state variables

S̄∗, Ī∗, R̄∗ are greater or equal to zero and smaller or equal to N . This is the case if

R0 ≥ 1, where

R0 = (βN)/(µ+ γ).

Note that S̄∗ = N/R0 and if R0 < 1 then S̄∗ is greater than N , which is not

possible. R0 is called the the basic reproduction number and can be interpreted

as the number of individuals infected by one infected individual within a totally

susceptible population during the time the individual is infected. Its estimation

can be used to characterize the spread of diseases (Chowell, Viboud, Simonsen,

& Moghadas, 2016; Aparicio & Pascual, 2007). If R0 < 1 only the disease-free

equilibria exist.

3.2. Stability of equilibria for the SIR model (3) with birth and death

rates

An equilibrium can be locally asymptotically stable or unstable. A locally stable

equilibrium is an equilibrium where the state variables converge back to the equilib-

rium after a small perturbation. In contrast if an unstable equilibrium is perturbed

it may not revert back to the equilibrium.

According to (Ma, 2009) for R0 ≤ 1 the disease-free equilibrium is stable and for

R0 ≥ 1 the second equilibrium (6) is stable. At R0 = 1 the second equilibrium (6)
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is the same as the disease-free equilibrium.

To determine the stability we have to determine the eigenvalues of the Jacobian

matrix at the point of the equilibrium (Barbarossa, 2011). The equilibria are stable

if the absolute values of all their eigenvalues are smaller than 1 and unstable when

any of the absolute values of their eigenvalues is greater than 1. If the absolute value

of the eigenvalues is equal to 1 the stability is not determined by the eigenvalues

(Barbarossa, 2011). The model (3) can also be rewritten as

St+1 = St − StItβ + µ(N − St)

It+1 = It + StItβ − Itγ − µIt(7)

Rt+1 = Rt + Itγ − µRt = N − St+1 − It+1.

To calculate the Jacobian matrix at the point of the equilibrium, we first take the

derivative of the functions on the right hand side of (7) with respect to the variables

S, I, R (for simplicity the index t is dropped here) and obtain


∂(S−SIβ+µ(N−S))

∂S
∂(S−SIβ+µ(N−S))

∂I
∂(S−SIβ+µ(N−S))

∂R
∂(I+SIβ−Iγ−µI)

∂S
∂(I+SIβ−Iγ−µI)

∂I
∂(I+SIβ−Iγ−µI)

∂R
∂(R+Iγ−µR)

∂S
∂(R+Iγ−µR)

∂I
∂(R+Iγ−µR)

∂R

 .(8)

This simplifies to 
1− Iβ − µ −Sβ 0

Iβ 1 + Sβ − µ− γ 0

0 γ 1− µ

 .(9)

The eigenvalues of this matrix are the roots of the characteristic polynomial:

(1− µ− λ)(1− µ− λ− βI)(1− µ− λ− γ + βS) + (1− µ− λ)β2IS(10)

To calculate the characteristic polynomial, we need to subtract λ from the functions

in the first diagonal of the matrix and then take the determinant of the resulting

matrix. To calculate the roots of the characteristic polynomial, we have to solve the

equation

(1− µ− λ)(1− µ− λ− βI)(1− µ− λ− γ + βS) + (1− µ− λ)β2IS = 0 .(11)

When calculating the roots of the polynomial we can easily see that is has a root at

λ = 1− µ. To calculate its further roots we assume that λ 6= 1− µ and divide (11)

by (1− µ− λ). If we expand the result, we have a quadratic equation:

βµI+βλI+βγI−βI−βµS−βλS+βS+µ2+2µλ+µγ−2µ+λ2+λγ−2λ−γ+1 = 0
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The solutions of this quadratic equation are

(2− 2µ− γ − βI + βS +
√
β2S2 − (2γβ + 2β2I)S + β2I2 − 2γβI + γ2)/2

and

(2− 2µ− γ − βI + βS −
√
β2S2 − (2γβ + 2β2I)S + β2I2 − 2γβI + γ2)/2.

Thus, to summarize, the eigenvalues are

λ1 =
2− 2µ− γ − βI + βS +

√
β2S2 − (2γβ + 2β2I)S + β2I2 − 2γβI + γ2

2

λ2 =
2− 2µ− γ − βI + βS −

√
β2S2 − (2γβ + 2β2I)S + β2I2 − 2γβI + γ2

2
(12)

λ3 = 1− µ.

Now we can substitute the values we obtained for I and S at the points of the

equilibria into the eigenvalue formulas and simplify the result. For the disease-free

equilibrium (5) we get the following equations:

λ1 =1− µ− γ + βN

λ2 =1− µ(13)

λ3 =1− µ

We can easily see that λ1 in (13) is only smaller or equal to 1 when R0 ≤ 1 since

R0 = βN/(µ + γ) and λ1 is smaller or equal to 1 for βN ≤ µ + γ. This also makes

sense from a biological standpoint; if an infected individual on average infects less

then one other individual during the cause of its infection, the disease will die out.

For the second equilibrium, if we substitute R0(µ+ γ) for βN in (12) we get

λ1 =
2− µR0 +

√
µ
√
µR0

2 + (−4γ − 4µ)R0 + 4µ+ 4γ

2

λ2 =
2− µR0 −

√
µ
√
µR0

2 + (−4γ − 4µ)R0 + 4µ+ 4γ

2
(14)

λ3 = 1− µ

I was not able to show that the absolute values of λ1 and λ2 (14) are smaller or equal

to 1 for all R0 ≥ 1 because the eigenvalues can become complex numbers. However,

for specific values the eigenvalues can be calculated. The stability of the equilibria

can therefore be determined for specific values of µ, γ, β and N .
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4. Numerical examples

For the model (3) with birth and death rates three scenarios, with different values

of the basic reproduction number R0 are considered (Table 1).

Scenario R0 µ γ β N Figure

Low 0.48 0.01 0.2 0.1/N 1 6

Medium 1.11 0.04 0.05 0.1/N 1 8

High 3.33 0.01 0.02 0.1/N 1 7

Table 1. The three scenarios considered for model (3). The terms

Low, Medium, High reflect to the basic reproduction number R0.

The equilibria and their stability and corresponding eigenvalues for the different

scenarios are shown in Table 2.

Scenario Equilibrium Eigenvalues Stable

Low (1, 0, 0) (0.89, 0.99, 0.99) yes

Medium (1, 0, 0) (1.01, 0.96, 0.96) no

(0.90, 0.04, 0.06) (0.97, 0.99, 0.96) yes

High (1, 0, 0) (1.07, 0.99, 0.99) no

(0.3, 0.23, 0.47) (0.98− 0.02i, 0.98 + 0.02i, 0.99) yes

Table 2. The equilibria, their eigenvalues and stability properties in

the scenarios in Table 1.

Figure 6 shows solution paths for the low reproduction number scenario. The

graphs show how the state variables S and I converge to S = N , I = 0 and R = 0

for different initial values of S and I.

The left graph of Figure 6 depicts multiple sets of initial conditions in one graph,

but does not show how quickly the state variables approach the equilibrium.

The right graph of Figure 6 allows only one set of initial conditions but shows how

quickly the state variables approach the equilibrium. The disease-free equilibrium is

stable, this can also be proven by calculating the eigenvalues. The absolute value of

the specific eigenvalues for this disease-free equilibrium are all smaller than 1. (See

Table 2)

Note that the initial values in the left graph of Figure 6 can only lie in the marked

triangle because the sum of all susceptible and infected individuals can not be greater

than the size of the total population (S + I ≤ N).
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Figure 6. Solutions for the low basic reproduction number scenario

with R0 < 1 (in this simulation R0 = 0.48). The parameter values

used are µ = 0.01, γ = 0.2, β = 0.1/N and N = 1. The left graph

shows solution paths in the SI plane for several initial conditions. The

right graph shows the size of the compartments over time. The lines

represent the relative frequency of susceptible (green), infected (red)

and removed (blue) individuals. The graphs were created with the R

program in Appendix C.

Figure 7 shows solution paths for the high reproduction number scenario. In the

left graph it can be seen that the state variables spiral towards the equilibrium. The

right graph shows the state variables oscillating towards the equilibrium. Two of

the eigenvalues for the stable equilibrium are complex and therefore the values of

the state variables oscillate towards the equilibrium (Barbarossa, 2011).

In Figure 8 solution paths for the medium reproduction number scenario with

only real eigenvalues are plotted. Since the eigenvalues for this equilibrium are real

the values for the state variables do not oscillate around the equilibrium.

Finally, Figure 9 shows solutions for the classical SIR model (1). The parameter

values used in this simulation are γ = 0.03, β = 0.1/N and N = 1. Since there

are no birth and death rates, only disease-free equilibria exist. They are marked by

the thick line in the left graph. Both graphs show that the state variables converge

towards one of these disease-free equilibria.
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Figure 7. Solutions for the high basic reproduction number scenario

with R0 > 1 (in this simulation R0 = 3.33) and two complex eigen-

values. The parameter values used are µ = 0.01, γ = 0.02, β = 0.1/N

and N = 1. The left graph shows solution paths in the SI plane for

several initial conditions. The right graph shows the size of the com-

partments over time. Legend see Figure 6. The graphs were created

with the R program in Appendix C.
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Figure 8. Solutions for the medium basic reproduction number sce-

nario with R0 > 1 (in this simulation R0 = 1.11) and real eigenvalues.

The parameter values used are µ = 0.04, γ = 0.05, β = 0.1/N and

N = 1. The left graph shows solution paths in the SI plane for several

initial conditions.The right graph shows the size of the compartments

over time. Legend see Figure 6. The graphs were created with the R

program in Appendix C.
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Figure 9. Solutions for a classical SIR model (1). The parameter

values used are γ = 0.03, β = 0.1/N and N = 1. The left graph shows

solution paths in the SI plane for several initial conditions. The right

graph shows the size of the compartments over time. Legend see figure

6. The graphs was created with the R program in Appendix A.
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5. Discussion

At first a quick introduction to the basic SIR model (1) was described. Then

the Kermack and McKendrick model (2), a model were the infectivity and the

recovery rate of an infected individual are influenced by how long the individual

has been infected was discussed and an example simulating a measles epidemic was

described. In addition, a model with birth and death rates (3) was introduced.

Then the equilibria for the discussed models and their stability were analyzed. In

the model with birth and death rates (3) R0 was identified as a determining factor as

to whether a non disease-free equilibrium exists. The calculations were than checked

for specific sets of parameters and initial conditions by numerical examples.

These models have several limitations.

• All individuals have the same probability of meeting each other.

• Most populations are not homogeneous and variables as the infectivity and

the recovery rate therefore may vary.

• Neither age nor sex is regarded.

• The models only work for large groups of individuals, in small groups sto-

chastic models have to be used because random variables can have a big

impact in small populations.

The information obtained by the modelling of infectious diseases can be used

to predictions whether and how an epidemic will occur and the efficiency of in-

terventions such as vaccination programs to stop an epidemic can be calculated

beforehand.
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:

Appendices

Appendix A. R program for the basic SIR model (1)

#Observed time steps

time = 500

#Total number of individuals

N = 100

#Probability of recovery of an infected individual at each time step

y = 0.01

#defining the infection rate

beta = 0.1 / N

#Making a vectors for each compartment

S = c(rep(0,time))

I = c(rep(0,time))

R = c(rep(0,time))

#Defining starting positions

S[1] = 99

I[1] = 1

R[1] = N - S[1] - I[1]

#Defining a counting variable for the loop.

tc = 1

while (time > tc)

#opening loop

{

tc = tc + 1
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#Defining the equations

S[tc] = S[tc - 1] - S[tc - 1] * I[tc - 1] * beta

I[tc] = I[tc - 1] + S[tc - 1] * I[tc - 1] * beta - I[tc - 1] * y

R[tc] = R[tc - 1] + I[tc - 1] * y

}

#closing loop

#Ploting the vectors

plot(

I, type = "l",col = "red",ylim = c(min(S,I,R), max(S,I,R)), xlab = "Time

Step",ylab = "S, I, R"

)

lines(R, type = "l",col = "blue")

lines(S, type = "l", col = "green")

par(mfrow = c(1,1))

Appendix B. R program for the model (2) with changing infection

and recovery rates (parameter values are chosen for

measles)

tt = 2000#time steps observed

#making vectors for the recovery and infection rate

rec = c(rep(0, tt))

inf = c(rep(0, tt))

rc = 1

rec[1] = 0

eps = 10 ^ (-10)

while (rc < tt) {

#opening loop

rc = rc + 1

flag = pnorm(rc,mean = 396,sd = 18) > 1 - eps

rec[rc] = ifelse(flag,1, dnorm(rc,mean = 396,sd = 18) / (1 - pnorm(rc

-
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1,mean = 396,sd = 18)))#defining specific recovery rates for each time

step an individual has been infected

}#closing loop

#sum(rec[1:510]*(1-c(0,pnorm(1:509,mean=396,sd=18))))

rc = 0

while (rc < tt) {

#opening loop

rc = rc + 1

inf[rc] = pnorm(rc,mean = 252,sd = 12) * (1 - pnorm(rc,mean = 348,sd

=

12)) * 1800 / 8760

/ N#defining specific infection rates for each time step an individual

has been infected

}#closing loop

measles = function(Sx,Ix,Rx) {

#making vectors for the state variables S and R

S = c(rep(0, tt))

R = c(rep(0, tt))

iv = c(rep(0, tt))

I = matrix(0,ncol = tt, nrow = tt)

#defining the initial values for the compartments

S[1] = Sx

I[1,1] = Ix

R[1] = Rx

N = S[1] + I[1,1] + R[1]

rc = 1

rec[1] = 0

eps = 10 ^ (-10)

while (rc < tt) {
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#opening loop

rc = rc + 1

flag = pnorm(rc,mean = 396,sd = 18) > 1 - eps

rec[rc] = ifelse(flag,1, dnorm(rc,mean = 396,sd = 18) / (1 - pnorm(rc

-

1,mean = 396,sd = 18)))#defining specific recovery rates for each time

step an individual has been infected

}#closing loop

#sum(rec[1:510]*(1-c(0,pnorm(1:509,mean=396,sd=18))))

rc = 0

while (rc < tt) {

#opening loop

rc = rc + 1

inf[rc] = pnorm(rc,mean = 252,sd = 12) * (1 - pnorm(rc,mean = 348,sd

=

12)) * 1800 /

8760 / N#defining specific infection rates for each time step an individual

has been infected

}#closing loop

ic = 0

tc = 0

while (tc < tt - 1) {

#opening loop

tc = tc + 1

#defining the equations

S[tc + 1] = S[tc] - S[tc] * sum(I[tc,] * inf)

R[tc + 1] = R[tc] + sum(I[tc,] * rec)

I[tc + 1,1] = S[tc] * sum(I[tc,] * inf)

ic = 0

while (ic < tc) {

#opening loop
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ic = ic + 1

I[tc + 1,ic + 1] = I[tc,ic] - I[tc,ic] * rec[ic] #one of the equations:

removes individuals from the subcompartments

}#closing loop

}#closing loop

icc = 0

while (icc < tt) {

#opening loop

icc = icc + 1

iv[icc] = sum(I[icc,]) #filling a vector with the total nuber of infected

for each time step taking the sum off all subcompartments

}#closing loop

plot(

S, type = "l", col = "green", ylim = c(min(S,iv,R), max(S,iv,R)),xlab

= "Weeks",ylab =

"Relative frequency", xaxt = "n"

)

axis(1,at = c(0,2,4,6,8,10,12) * 7 * 24,labels = c(0,2,4,6,8,10,12))

lines(R, type = "l", col = "blue")

lines(iv, type = "l", col = "red")

#abline(v=c(240*1:8),col="gray")

}

#plots the grath for the 2 scenarios

pdf(file = "~/Desktop/rplots/kermackmckendrikvac.pdf",width = 7, height

=

3.5)

par(pty = "s",mfrow = c(1,2),mar = c(4, 4, 1, 2) + 0.1)

measles(0.995,0.005,0)

measles(0.1875,0.005,0.8075)

dev.off()

#plots the grath with \beta and the average time until removal

pdf(file = "~/Desktop/rplots/kermackmckendrikrecinf.pdf",width = 7, height

=

3.5)

par(pty = "s",mfrow = c(1,2),mar = c(4, 4, 1, 2) + 0.1)
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plot(

inf,type = "l", xlab = "Weeks after infection",

ylab = expression(beta[theta]),xaxt =

"n"

)

axis(1,at = c(0,2,4,6,8) * 7 * 24,labels = c(0,2,4,6,8))

plot(

dnorm(1:510,mean = 396,sd = 18),type = "l",xlab = "Weeks after infection",

ylab = "Density",xaxt =

"n"

)

axis(1,at = c(0,1,2,3) * 7 * 24,labels = c(0,1,2,3))

dev.off()

Appendix C. R Program for the model (3) with birth and death

rates

The R program for the graphs 6, 7 and 8 with the parameter values for graph 6:

library(shape)

#Observed time steps

time = 200

#Making a vectors for each compartment

S = c(rep(0,time))

I = c(rep(0,time))

R = c(rep(0,time))

#Total number of individuals

N = 1

#defining birth/death rate

mu = 0.01

#Probability of recovery of an infected individual at each time step

y = 0.2

#defining beta

beta = 0.1 / N
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#pdf(file = "~/Desktop/rplots/Rs1.pdf",width=7, height=3.5)

#defining the plot layout

par(pty = "s",mfrow = c(1,2),mar = c(4, 4, 1, 2) + 0.1)

#plotting the left plot

plot(S,I,type = "l",ylim = c(0,N), xlim = c(0,N))

lines(c(0,1,0,0),c(1,0,0,1),col = "grey")

#defining counting variable

Nt = N

while (Nt >= 0)

#opening loop {

#Defining the initial positions

S[1] = N - Nt

I[1] = Nt

R[1] = N - S[1] - I[1]

#Defining a counting variable

tc = 1

while (time > tc)

#opening loop

{

tc = tc + 1

#Defining the equations

S[tc] = S[tc - 1] - S[tc - 1] * I[tc - 1] * beta + mu * (I[tc - 1] +

R[tc - 1])

I[tc] = I[tc - 1] + S[tc - 1] * I[tc - 1] * beta - I[tc - 1] * y - mu

*

I[tc - 1]

R[tc] = R[tc - 1] + I[tc - 1] * y - mu * R[tc - 1]

}#closing loop

lines(S,I)

i = 5

Nt = Nt - N / 10
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if (Nt > 0) {

Arrows(S[i],I[i],S[i + 1],I[i + 1],arr.length = 0.3)

}

}

Nt = N

while (Nt >= 0) {

#Defining starting positions

S[1] = N * 0.4 - Nt * 0.4

I[1] = Nt * 0.4

R[1] = N - S[1] - I[1]

#Defining a counting variable for the loop.

tc = 1

while (time > tc)

#opening loop

{

tc = tc + 1

#Defining the equations

S[tc] = S[tc - 1] - S[tc - 1] * I[tc - 1] * beta + mu * (I[tc - 1]

+ R[tc -

1])

I[tc] = I[tc - 1] + S[tc - 1] * I[tc - 1] * beta - I[tc - 1] * y -

mu *

I[tc - 1]

R[tc] = R[tc - 1] + I[tc - 1] * y - mu * R[tc - 1]

}

#closing loop

lines(S,I)

i = 5

Nt = Nt - N / 5

Arrows(S[i],I[i],S[i + 1],I[i + 1],arr.length = 0.3)

}

points(1,0,pch = 20)

points((mu + y) / beta,(mu * N * beta - mu ^ 2 - mu * y) / (beta * y +

beta *
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mu),pch =

20)

#Observed time steps

time = 500

#Making a vectors for each compartment

S = c(rep(0,time))

I = c(rep(0,time))

R = c(rep(0,time))

#Ploting the vectors

R0 = beta * N / (mu + y)

#Defining starting positions

S[1] = 0.9

I[1] = 0.1

R[1] = N - S[1] - I[1]

#Defining a counting variable for the loop.

tc = 1

while (time > tc)

#opening loop

{

tc = tc + 1

#Defining the equations

S[tc] = S[tc - 1] - S[tc - 1] * I[tc - 1] * beta + mu * (I[tc - 1] +

R[tc -

1])

I[tc] = I[tc - 1] + S[tc - 1] * I[tc - 1] * beta - I[tc - 1] * y - mu

*

I[tc - 1]

R[tc] = R[tc - 1] + I[tc - 1] * y - mu * R[tc - 1]

}
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#closing loop

#Ploting the vectors

plot(

I, type = "l",col = "red",ylim = c(min(S,I,R), max(S,I,R)), xlab = "Time

Step",ylab = "S, I, R"

)

lines(R, type = "l",col = "blue")

lines(S, type = "l", col = "green")

par(mfrow = c(1,1))

#dev.off()
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