NACHRICHTEN
DER
ÖSTERREICHISCHEN
MATHEMATISCHEN GESELLSCHAFT
BEILAGE ZU
„INTERNATIONALE MATHEMATISCHE NACHRICHTEN“
*
SONDERHEFT
BERICHT ÜBER DEN
VI. ÖSTERREICHISCHEN MATHEMATIKERKONGRESS
LINZ, 16. — 20. IX. 1968

NR. 91
JÄNNER 1970
WIEAN
INHALTSVERZEICHNIS

Ehrenschutz, Vortragssktionen .. 1
Kongressprogramm, Eidespruche ... 2
Vortragsberichte
Sektion I: Algebra und Zahlentheorie 5
Sektion II: Analysis ... 28
Sektion III: Geometrie und Topologie 57
Sektion IV: Angewandte Mathematik 80
Sektion V: Wahrscheinlichkeitstheorie und Statistik 89
Sektion VI: Numerische Mathematik und Informationsverarbeitung 92
Sektion VII: Geschichte und Philosophie 99
Teilnehmerverzeichnis ... 103

NACHRICHTEN
DER
ÖSTERREICHISCHEN
MATHEMATISCHEN GESELLSCHAFT

SEKRETARIAT: KARLSPLATZ 13 1040 WIEN (TECHNISCHE HOCHSCHULE)
TELEPHONE 65 76 41 / POSTSPARmkassenkonto 82395

23. Jahrgang Jänner 1970 Nr. 91

VII. ÖSTERREICHSCHER MATHEMATIKERKONGRESS
INTERNATIONALES MATHEMATIKERTREFFEN

EHRENSCHUTZ

Dr. Theodor Piffi-Perević,
Bundesminister für Unterricht

Dr. Dr. h. c. Heinrich Gleißner,
Landeshauptmann von Oberösterreich

Theodor Grill,
Bürgermeister der Landeshauptstadt Linz

FÖRDERER UND SPENDER

Bundesministerium für Unterricht
Land Oberösterreich
Stadt Linz
Kammer der gewerblichen Wirtschaft für Oberösterreich
Industriellen-Vereinigung für Oberösterreich
Kuratorium zur Förderung der Wissenschaft nationalökonomischer und
naturwissenschaftlicher Richtung
IBM-Österreich

VORTRAGSSEKTIONEN

1. Algebra und Zahlentheorie
2. Analysis
3. Geometrie und Topologie
4. Angewandte Mathematik
5. Wahrscheinlichkeitstheorie und Statistik
6. Numerische Mathematik und Informationsverarbeitung
7. Geschichte und Philosophie
KONGRESSPROGRAMM

Sonntag, 15. September 1968: Anreisetag
Zwanzigloses Treffen im Casino-Restaurant.

10.30 Uhr: Feierliche Kongreßeröffnung im Hörsaal 1 der Hochschule für Sozial- und Wirtschaftswissenschaften mit anschließendem Buffet.
14—17 Uhr: Vorträge in den Sektionen.

9—12 Uhr: Vorträge in den Sektionen.
14—16 Uhr: Vorträge in den Sektionen.
17 Uhr: Kepler-Fest der Österreichischen Mathematischen Gesellschaft im Steirernen Saal des Linzer Landhauses mit anschließendem Empfang durch Stadt und Land.

Mittwoch, 18. September 1968: Ausflugsstag
8.30—10.30 Uhr: Ganztagiger Schiffsausflug an Bord der „Johann Strauß“ nach Engelhartszell mit Besichtigung des dortigen Trappistenklosters.

Donnerstag, 19. September 1968: 3. Arbeitstag
9—12 Uhr: Vorträge in den Sektionen.
14—16.30 Uhr: Vorträge in den Sektionen.
16.30 Uhr: Mitgliederversammlung der Deutschen Mathematiker-Vereinigung.

9—12 Uhr: Vorträge in den Sektionen.
14—17 Uhr: Vorträge in den Sektionen.
19 Uhr: Abschlußabend im Kaufmännischen Vereinshaus in Linz mit gemeinsamem Abendessenzu Tanz.

EINDRÜCKE VOM LINZER KONGRESS

— 2 —

— 3 —

die sehr angenehme und komfortable Unterkunft fanden, deren Ruhe sehr wohltuend von dem Lärm der geschäftigen Großstadt Linz abtasten, deren Hotels, Gaststätten und geschätzte Weinkeller des Abends von den Mathematikern und ihren Angehörigen viel besucht wurden und Möglichkeiten zu vielen Gesprächen und Diskussionen gaben.

Die 220 wissenschaftlichen Kongreßvorträge hatten in sieben Sektionen jeweils 20 Minuten Bede Zeit zur Verfügung.

Die feierliche Eröffnung des Kongresses geschah durch den österreichischen Bundesminister für Unterricht Dr. Theodor Pięfli-Počevič. Ihr war die Ansprache des Rektors der Linzer Hochschule Prof. Ing. Dr. Adolf Adam, eines Statistikers, der zu deutlichen Ausführungen von den Mathematischen Gesellschaften Prof. Dr. Wilfried Nöbauer, der den Stand der heutigen Schulmathematik mit dem der Wissenschaft des Jahres 1700 verglich und einige wesentliche Gründe für den gegenwärtigen Umbruch der Schulmathematik aufzählte, vorangegangen, auf die der Minister in fundierter Rede ausführlich und schlüssig einging und zugleich die Bedeutung des Kongresses bei den neuen pädagogischen Wandlungen des mathematischen Gymnasialunterrichts erbat. Nach der Ansprache des Linzer Bürgermeisters Theodor Grill behielt der Landeshauptmann von Oberösterreich Dr. Heinrich Gletscher sein „intelligentes Manuskript“ in der Tasche und sprach freundlich, sympathisch, gewandt und gehaltvoll über die Bedeutung akademischer, insbesondere mathematischer Bildung für sein Land und dessen zukünftige Existenz.

Der in allen diesen Ansprachen am häufigsten zitierte Mathematiker war Johannes Kepler, der in Linz den Schülern zu seinen Planeten gesetzt legte und auch als „Prärektor“ in die neue Hochschule reintegriert wurde, angeblich auch das modernste moderne Computerwesen ideell bewusst hat. (Ein mittlerer Computer wurde gleichzeitig durch den Minister eingeweiht. Dem Genius Kepler (1570—1631) huldigte — kurz vor seinem 400. Geburtstag — eine eigene Feier der Österreichischen Mathematischen Gesellschaft im „Steineren Saal“ des Linzer Landhauses mit Ansprachen des Rektors Prof. Dr. A. Adam (Linz) und des Mathematik-Historikers Prof. Dr. J.
Fleckenstein (München), dessen ausgeschnitten formulierte und sachkundige Darlegungen viel Beifall fanden. Leider erwies sich der schöne Saal als wenig akustisch, und nur für gut artikulierende Redner geeignet. Sicher war das gleichzeitig anberaumte Orgelkonzert an der Bruckner-Orgel in St. Florian ein akustisch viel erfreulicherer Genuß.

Der Mittwoch war bei bedecktem Himmel einer romantischen Fahrt auf der Donau ... verhältnis der Aussprache und des näheren Kennislernens, bis der Platzregen in Linz alles trennte.

Gewisse Pannen (Buffet bei der Eröffnung, Mittagsessen auf dem Schiff) vergibt der vorzüglich auf das Wesentliche gerichtete Mathematiker schnell. Beim Schlußabend sprach nur noch der Kongreß-Vorsitzende Prof. Dr. W. Nöbauer davon. Seinen Dankesworten schloß sich für die auswärtigen Kongreßteilnehmer, besonders auch für die Deutsche Mathematiker Vereinigung, die ihre Jahrestagung 1968 mit dem Kongreß vereinigt hatte, in launiger Weise Prof. Dr. Horst Schubert (Kiel) als Vorstandsmitglied der DMV an. Danach wurde noch fließig getanzt.

Übrigens wurde auch für die Damen ein abwechslungsreiches Programm geboten. Die Stadtführung wurde in Linz, die Besichtigung des Eisen- und Stahlwerkes der VOEST, des Heimatmuseums Linz, des Klosters Wilhering und die große Autobusfahrt in das landschaftlich und kulturell berühmte Mühlviertel (mit dem wunderbaren gotischen Kefermarkter Altar) fanden allseits großen Beifall.

So bleibt zum Schluß noch ein Wort des Dankes für alles Gebotene und der Wunsch an die österreichische Mathematische Gesellschaft, in vier Jahren wieder einen schönen und erheblichen Kongreß zu veranstalten. Sicher wird er wieder von vielen alten und neuen Freunden Österreichs sehr gerne besucht werden.

K. Strubecker (Karlstraße).

VORTRAGSBERICHTE

Im Verlauf des VII. Österreichischen Mathematikerkongresses wurden im Rahmen der sieben vorgesehenen Sektionen insgesamt 230 Vorträge von je 40 Minuten Normaldauer gehalten.

Die der Kongreßleitung zur Verfügung gestellten Vortragsauswürze wurden sektionsweise wiedergegeben. Innerhalb der Sektionen wurde hier die alphabetische Reihenfolge der Vortragenden eingehalten.

Die Vorträge verteilen sich auf die einzelnen Sektionen wie folgt:

<table>
<thead>
<tr>
<th>Sektion</th>
<th>Vorträge</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Analysis</td>
<td>52</td>
</tr>
<tr>
<td>II. Geometrie und Topologie</td>
<td>67</td>
</tr>
<tr>
<td>III. Wahrscheinlichkeitsrechnung und Statistik</td>
<td>80</td>
</tr>
<tr>
<td>IV. Analysis</td>
<td>11</td>
</tr>
<tr>
<td>V. Wahrscheinlichkeitsrechnung und Statistik</td>
<td>20</td>
</tr>
<tr>
<td>VI. Numerische Mathematik und Informationsverarbeitung</td>
<td>30</td>
</tr>
<tr>
<td>VII. Geschichte und Philosophie</td>
<td>75</td>
</tr>
</tbody>
</table>

SEKTION I:

Algebra und Zahlentheorie

Für endliche Gruppen mit Hallscben Normalteilerketten gelten ähnliche Sätze wie für endlich auflösbare Gruppen: Ist G = G_0 > ... > G_1 > e) eine Hallscbe Normalteilerkette der nichtauflösbaren Gruppe G und G_0/G_1 die einzige Faktor von gerader Ordnung, dann gibt es nach Wiandt ein System P_1, ..., P_r, H paarweise vertauschbarer Gruppen tellerfreundene Ordnung ("vollständiges Hallsystem") mit:

- a) Die Gruppen P_i sind Sylowgruppen von G.
- b) Für jedes i < k gibt es ein Tupel (i_1, ..., i_0) mit G_{i_{k+1}} = P_{i_1} | P_{i_2} | ... | P_{i_k}.
- c) Es ist G_0/G_1 = H.

Je zwei solche Systeme sind konjugiert.

Sei nun M eine maximale Untergruppe von G. Es gibt dann eine zu M konjugierte Untergruppe M', so daß M' ∩ P_i, ..., M' ∩ M H vollständiges Hallsystem von M ist. G : M stellt stets eine Gruppe oder H, so daß M' = P_i, ..., P_r, (M' ∩ P_i, | M' ∩ P_r, H oder M' = P_i, ..., P_r M' ∩ H).

Für den ersten Fall kommt man zu den folgenden Aussagen:
- b) Ist M < G, dann gilt M' ∩ P_i ≥ N_{P_i} (P_1, ..., P_r, P_r, H) ⊃ P_i.

II. Verbeleib verstehen wir unter N_0(G) den Normalisator einer Untergruppe U in G.

P. C. Baa y en (Amsterdam): A combinatorial problem in finite abelian groups.

For a finite (additive) abelian group G let λ(G) be the maximal natural number n such that G contains n of members g, ..., g with the following property:

\[\sum_{i=1}^{n} g_i = 0 \]

where i = 0, ..., m. Let i be the minimal integer such that G_i contains a cyclic group of order i. Then λ(G) = \[\sum_{i=1}^{m} n_i \] for the special case G = C_p x C_p (p prime) this was conjectured by R. Erdös.

The conjecture was proved recently for all p-groups, independently by D. Krashenilnikov and by J. E. Olson. It has also been verified for all C_{p^k} x C_{p^k} with p^2 < 2, for all C_{p^m} x C_{p^n} x C_{p^n} with p prime and p^m = p^n + ... + p^n - 1, and for certain groups of the form C_{2^m} x C_{2^n} x C_{2^n}. Some related results have been obtained. For p-groups in particular more detailed information is available.

Es wird die Theorie der Gleichverteilung in der Gruppe der ganzen p-adischen Zahlen hauptsächlich quantitativ verfolgt, indem der Begriff der Diskrepanz \(D_y \) eingeführt und untersucht wird. Dabei werden sowohl aus dem Reellen bekannte Sätze hergeleitet, aber auch die Unterschiede, vor allem in Bezug auf die Größenordnung der Diskrepanz aufgezeigt. Es wird eine notwendige und hinreichende Bedingung dafür angegeben, daß \(D_y \) beschränkt ist. Als Folgerung aus dieser Bedingung erhält man: Ist \(N D_y \) beschränkt, so ist die Folge gleichmäßig gleichverteilbar. An einem Beispiel wird gezeigt, daß die Umkehrung nicht gilt. Die Aussagen über die Umordnung von Folgen, die \(H_{an} \) für Folgen reeller Zahlen gemacht hat, werden ins p-adische übertragen. Auf Verteilungsmerkmale wird eingegangen.

A. H. Börs (Rijswijk): \(N \)-prod-assoziation und -alternative Ringe.

Neben den schon früher eingeführten n-assoziierten Ringen — alle \(n \)-assoziierten Ringe \(\{a_0, a_1, \ldots, a_n\} \), rekursiv definiert durch

\[
(a_0, a_1, \ldots, a_n) = \sum_{k=1}^{n-1} (-1)^{n-k} (a_0, \ldots, a_{k-1}, a_k, \ldots, a_n),
\]

verschwinden — betrachten wir die \(n \)-prod-assoziativen und \(n \)-prod-alternativen Ringe. Ein nicht notwendig assoziativer Ring wird \(n \)-prod-assoziativ bzw. \(n \)-prod-alternativ genannt, wenn jedes Produkt von \(n \) Faktoren, bzw. jedes Produkt von \(n \) Faktoren, worin mindestens zwei gleiche vor- kommen, klammerlos geschrieben werden kann. Man kann beweisen, daß ein \(n \)-prod-assoziativer Ring auch \(n \)-assoziativ ist. Etwas ähnliches gilt für \(n \)-prod-alternative Ringe.

S. Bögg (Heidelberg): Klassenzahlen indefiniter schiefhermitescher Formen.

\(k \) sei ein algebraischer Zahlkörper, \(D \) ein Quaternionenschiefkörper mit Zentrum \(k \) und Standardinvoluition \(-v \). Ein \(n \)-dimensionaler \(D \)-Linksektorraum mit bezüglich — schiefhermiteschen, nicht ausgearteten Skalarprodukt. \(U \) sei die unitäre Gruppe von \(V \) und \(D \). \(V \) wird von Abbildungen \(S \) der Gestalt \(2x = \sum_{i=1}^{2n} x_i e_i + x \) mit \(0 = x \in D \) und \(s \in V \) erzeugt, und durch \(\psi(S) = a \in k^{2n} \) wird die Spinormnorm von \(U \) nach \(k^{2n} \) definiert. Diese Definition stimmt mit der kohomologischen überein. \(\tilde{D} \) sei eine Maximalordnung von \(D \) und \(M \) ein \(\tilde{D} \)-Gitter in \(V \). Für \(\tilde{D} \geq 2 \) besitzt \(M \) eine Orthogonalbasis über \(\tilde{D} \), und es werden Erzeugendensysteme der unitären Gruppe von \(M \) angegeben. Damit läßt sich der Wurfervorrat der Spinormnorm von \(M \) bestimmen und hieraus die Anzahl der Spinorgen sich als die indefinite, welche im indefiniten Falle nach dem starken Approximationsatz von \(M. Kneser \) bekanntlich gleich der Klassenzahl ist. Es wird \(\dim V \geq 4 \) vorausgesetzt, u. a. weil das Hasse-Prinzip (Welf, Acta Math. 114) benutzt wird.

V. Bohun-Chudyniv (Baltimore): On generalized triple-systems of even orders.

The author of this paper has constructed:

I. (a) Generalized double-triple-systems, and (b) Generalized non-double-triple-systems of odd orders where \(p = 3^a 5^b 7^c \cdots, p^m \) (in which \(p = \text{prime number} \) satisfying the relations \(a_0 = 0, q \geq 1 \)). In (A) \(a_0 = 0 \) for the generalized double-triple systems and \(a_0 > 0 \) for the generalized non-double-triple systems (AMS Notices, ab 832—39, April 1961).

II. Generalized n-tuple systems (GNTS) of odd order where \(n = p_1 \cdots p_k \), in which \(p_i \) is a prime order for which generalized triple-systems exist (AMS Notices, ab 635—39, August 1966).

III. Direct product n-tuple systems of odd order constructed by direct product of any Kirkman triple-systems of by any two of the author's systems given in I and II, or by combinations of types.

IV. Direct product of n-tuple systems of even order, including Hefter's triple-system of 4th order (Math. Ann. v. 38, 1901, p. 490). The general expression for direct-product of n-tuple systems, including the even orders, is represented by the expression \(\psi = \delta \beta \beta_{1} \cdots \beta_{n} \), where \(\beta_{1}, \beta_{i} \geq 2, i = 1, k \), and \(p_i \) are prime numbers for which systems of type I, II, and III above exist (AMS Notices, ab 64—73, April 1967).

In the present paper the author establishes the following: 1) The existence of generalized triple-systems of even order which are not direct-product triple-systems \((n \geq 4)\); 2) The first example of a generalized triple system of even order, constructed by the author, of order 10; 3) Complete classification of generalized triple-systems of orders 10, 4) Proof that the orders of even-order generalized triple-systems are defined by the expression \(n = 2(3^{2k-1} + 2), k \geq 0 \); 5) Each generalized triple-system of even order with some additional relations represents binary combination of loops and idempotent quasi-loop of the same order.

V. Bohun-Chudyniv (Baltimore) and B. Bohun-Chudyniv (Washington): On idempotent quasi-loops of every order \(n \geq 5 \), and idempotent quasi-groups of every order \(2m \geq 4 \).

In mathematical literature the term quasi-group is used for both quasi-systems (quasi-groups and quasi-loops). The first author has found a set of fundamental differences between quasi-groups and quasi-loops, and the author refines the use of these terms instead of one (V. Bohun-Chudyniv, ICM, Moscow, 1966, et al.). In this paper the following is established:

I. The algorithms for constructing idempotent quasi-groups and groups of every odd order \(2m+1 \geq 3 \).

II. The algorithms for constructing idempotent quasi-loops and loops for every order \(n \geq 5 \).

III. Methods of complete enumeration of idempotent quasi-groups isotopic to cyclic groups of order \(2n+1 \geq 3 \).

IV. Methods of determining orders of the even-ordered groups which are isotopic to idempotent quasi-groups, and the algorithms for constructing them.

V. Proof of the theorem that the set of isotope operators for constructing all idempotent quasi-groups of \(2n-1 \) order isotopic to a cyclic group is a group of \(n = \phi (n) \) order, where \(\phi (n) \) is the Euler function.
VI. Propositions that not each loop of a given order for any \(n \geq 5 \) is isotopic to an idempotent quasi-loop, and not every group of an even order \(n \geq 4 \) is isotopic to a quasi-group.

VII. The necessary and sufficient conditions for a loop of order \(n \) to be isotopic to an idempotent quasi-loop, and for a group of even order to be isotopic to an idempotent quasi-group.

It was proved (V. Bohun-Chadyny, DMV, Freiburg, 1965) that each Kirkman triple system with some additional relations represents binary composition of a loop of the same order, and (Author, 1964, 68, 60, 62) that the same triple system with relation \(a = a^2 \) represents an idempotent quasi-group or an idempotent quasi-loop. The present paper shows the necessary and sufficient conditions for partitioning Kirkman triple systems into those which represent idempotent quasi-groups, and those representing idempotent quasi-loops. Many illustrative examples are given.

W. Brauer (Bonn): Zu den Sylowsätzen von Hall und Čečkin.

P. Bundschuh (Freiburg i. Br.): Einige Ergebnisse aus der Theorie der transzendenten Zahlen.

(1) Approximation transzendenten Zahlen durch algebraische:

Die ganze Funktion \(f(x) \) endlicher Wachstumsordnung \(p > 0 \) genüge einer algebraischen Differentialgleichung erster Ordnung und besitze ein algebraisches Multiplikationstheorem, jeweils mit konstanten algebraischen Koefizienten. Die komplexe Zahl \(\alpha \) sei \(\neq 0 \) und so, daß \(f(x) \) algebraisch ist und \(f'(a) \neq 0 \) (zweite weitere Bedingungen an \(\alpha \) sind für \(f'(a) \neq 0 \)). Dann gelten für alle in einem algebraischen Zahlkörper endlicher Größen gelegen sein; weiter seien geeignete obere Abschätzungen für Nenner und Maximum der Konjugierten der algebraischen Größen

\[
\frac{d}{dx} f(x) + a f(x) \leq a + \beta \quad (t = x, x = 0, 1, \ldots)
\]

bekannt. Dann ist nach einem Satz von Th. Schneider eine transzendente. Sei \(n > 1 \) eine natürliche Zahl und \(\varepsilon > 0 \) beliebig vorgegeben; dann gibt es eine natürliche Zahl \(H_n(f, \alpha, a, n) \) derart, daß für alle algebraischen Zahlen \(\varepsilon \) eines Grades \(\leq n \) und einer Höhe \(H > H_n(f, \alpha, a, n) \) gilt:

\[
|\varepsilon| > \exp(-\log H (\log \log H)^n + \varepsilon), \quad 0 < \varepsilon < 1;
\]

\[
|\varepsilon| > \exp(-\log H (\log \log H)^n + \varepsilon), \quad 0 < \varepsilon < 12
\]

Mit geringen Änderungen ergibt sich für meromorphe \(f(z) \) dasselbe Resultat.

(2) Ein Irrationalitätsbeweis und ein Maß für die Irrationalität:

Gegeben ein imaginär-quadratischer Zahlkörper \(K \), seien \(f(z) \) eine ganze Funktion \(n > 1 \) die ganze Funktion \(f(z) \) genügt der Funktionalgleichung \(f(z) = f(z) \cdot f(z) + f(z) \) mit \(f(z) = 1 \). Die komplexe Zahl \(\alpha \) sei \(\neq 0 \) und \(\neq 0 \). Dann kann nicht \(a \in K \) und \(f(a) \in K \) sein. Ferner wird qualitativ gezeigt, daß sich \(f(a) \) (außer \(K \)) nicht „zu gut“ durch Zahlen aus \(K \) approximieren läßt.

K. Burde (Braunschweig): Verteilungseigenschaften von Potenzresten.

Ist \(p \) eine ungerade rationale Primzahl, so ordnen wir jedem vom Hauptidekarakter \(\chi \) verschiedenen Restklassencharakter \(\chi \) modulo \(p \) die \(p \)-regihige quadratische Matrix

\[
\begin{pmatrix}
\chi(1) & \chi(2) & \chi(3) & \cdots & \chi(p-1)
\end{pmatrix}
\]

und dem Hauptidekarakter, die \(p \)-regihige Einheitsmatrix \(A(z) = E \) zu. Dann ist durch \(C \rightarrow A(z) \) eine \(p \)-dimensionale unitäre Darstellung der Charaktergruppe modulo \(p \), also auch der primen Restklassenrupe modulo \(p \) gegeben.

Die Betrachtung der Komponentenzerlegung gewisser Vektorfelden besitzt der durch \(A(z) \) gegebenen unitären Basis liefert weitere Aussagen über die Verteilung der Charakterwerte \(\chi(1) = 1, \ldots, p-1 \). — Im Fall des quadratischen Charakters ergeben sich einige bekannte Resultate — besonders erfahrungsmäßig — die bekannt sind. Wir können die bekannten Eigenschaften der Legendre- und der mittelbare — Verteilungseigenschaften der Legendresymben. Die Methode liefert aber auch für Charaktere höherer Ordnung Ergebnisse, z. B. im Fall \(p = 1 \) mod 4 die bisher wohl nicht bekannten Sequenzzahlen für die Sequenzen der Länge 2 der biquadratischen Reste.
k. Burkard (Graz): Zur gleichmäßigen Gleichverteilung modulo Δ

Es sei Δ eine beliebige Unterteilung der reellen Zahlengerade. Eine Familie von Folgen nennen wir gleichmäßig gleichverteilt modulo $\Delta (= \text{glnv. mod } \Delta)$, wenn die mod Δ reduzierten Folgen glv. in Einheitsintervallen sind.

Wir schon einfache Beispiele zeigen, gilt für die Gleichverteilung mod Δ nicht mehr der Satz, daß mit der mod Δ glv. Folge $\varphi = (x_n)$ auch die Familie von Folgen $\omega_\alpha = (x_{n+\alpha})$, $\alpha \in \mathbb{R}$ glv. mod Δ sind. Dieser Satz bleibt richtig für äquivalente Unterteilungen sowie für äquidistante Folgen und periodische Folgen. Man kann nun zeigen, daß auch jede äquidistante Folge $(n\xi)$ glv. ist modulo einer Unterteilung, die durch ein Polygon erzeugt wird, aber für kein ξ die Familie von Folgen $\omega_\alpha = (x_{n+\alpha})$, $\alpha \in \mathbb{R}$ glv. ist. Durchlaufend jedoch eine beschränkte Teilmenge \mathbb{S} von reellen Zahlen, ist welter Δ eine Unterteilung mit monoton wachsenden Intervallen und $(n\xi)$ eine monotone Folge die mod Δ glv. ist, dann ist die Familie von Folgen $\omega_\alpha \in \mathbb{S}$ mit $\omega_\alpha = (x_{n+\alpha}), n = 1, 2, \ldots$, glv. mod Δ.

R. Dašić (Belgrad): Selections in hypergroups.

Vertragauszug nicht eingelangt.

R. Z. Domiaty (Graz): Spezielle Matrizen.

Mit M_n wollen wir den Ring der komplexen quadratischen Matrizen der Ordnung n und mit E_n bzw. mit U_n die Klasse aller Matrizen aus M_n bezeichnen, deren sämtliche Eigenwerte λ beträgt nach kleiner eins bzw. gleich eins sind. Nach Aufstellung verschiedener bekannter Sätze, die die Matrizen aus E_n charakterisieren, zeigen wir:

Hilfssatz 1. Ist N eine multiplikative Norm in M_n und $A \in M_n$, so gilt: Genau dann ist $A \in E_n$, wenn $N(A^p) < 1$ ist.

Satz 1. Es sei $A \in M_n$. A gehört dann nur der Klasse E_n an, wenn für eine reelle Zahl $a \in [0,1]$ die Ungleichungen $|\text{Sp } A^m| < m^n$ (m = 1, 2, \ldots) erfüllt sind.

Satz 2. Es sei $A \in M_n$. Notwendig und hinreichend dafür, daß $A \in U_n$ ist, ist das Bestehen der Ungleichungen $|\text{Sp } A^m| < n$ für sämtliche ganze Zahlen m.

Dementsprechend verstehen wir hier unter einer Bewegungsgruppe ein Paar (G,D), wobei G eine Gruppe und D eine invariante Teilmenge von G ist, die aus involutorischen Elementen besteht und für die der Dreipunktungsatz gilt. Auf Grund der Gültigkeit des Dreipunktungssatzes kann man (G,D) eine reguläre Inzidenzstruktur zuordnen, in der die Elemente von D die Geraden sind.

Sind (G,D) und (G',D') zwei Bewegungsgruppen, so verstehen wir unter einem Bewegungsmorphismus von (G,D) in (G',D') einen Homomorphismus h der Gruppe G in die Gruppe G', für den der ferner $h(D) \subset D'$ gilt. Dann bilden die Bewegungsgruppen zusammen mit den Bewegungsmorphismen eine Kategorie, die Kategorie der Bewegungsgruppen. Ferner gilt, daß jeder Bewegungsmorphismus ein Homomorphismus der zugehörigen Inzidenzstrukturen ist.

Wir zeigen, daß in dieser Kategorie Koprodukte existieren und daß es zu jeder Menge M eine universelle Bewegungsgruppe G gibt. Dabei benutzen wir, daß es in der Kategorie der Gruppen Koprodukte (freie Produkte) gibt, und unsere Aufgabe besteht nun darin, in diesem Koprodukt eine geeignete Geradenzahl zu finden und nachzuweisen, daß für sie der Dreipunktungsatz gilt.

P. Flor (Wien): Gruppen nichtnegativer Matrizen.

W. Grötz (Braunschweig): Ultraprodukte.

S. K. Groesser (Minneapolis): Theorie der zentralen topologischen Gruppen.

Eine zentrale topologische Gruppe (Z-Gruppe) ist eine lokalkompakte Gruppe G mit der Eigenschaft, daß G/K kompakt ist ($Z =$Zentrum). Verf. hat kurz mit zusammen mit M. Moskowitz (Trans. AMS and Bull. AMS) die Struktur- und Darstellungstheorie der Z-Gruppen entwickelt; maßgeblicher Gesichtspunkt war die angestrebte einheitliche Verallgemeinerung der

F. Halter-Koch (Gratz): Kriterien zum 8, Potenzcharakter von 3 und 5.

-3 ist genau dann 8. Potenzrest nach einer Primzahl p = 1 mod 8, wenn sich p in der Form p = x^2 + 144y^2 = x^2 + 72z^2 mit x + u = 0 mod 12 darstellen läßt.

+5 ist genau dann 8. Potenzrest nach einer Primzahl p = 1 mod 8, wenn sich p in der Form p = x^2 + 400y^2 = x^2 + 8y^2 mit x + u = 0 mod 20 oder 3x + u = 0 mod 20 darstellen läßt.

H. Harborth (Graustein): Anzahlen von Diagonalschnittpunkten und Teilflächen im regulären n-Eck.

Betrachtet man alle möglichen Diagonalen in einem regulären n-Eck, so ist die Anzahl der Schnittpunkte innerhalb des n-Ecks für ungerades n bekannt.

For gerades n werden beide Anzahlen kleiner; sie werden für n = ±2 (mod 6) bestimmt und für n = 0 (mod 6) abgeschätzt.

K. Hellmich (Gratz): Über ein Lösungsverfahren des Zuordnungsproblems.

Let A denote a Lie or Jordan algebra or an associative algebra of finite dimension over a field of characteristic zero. In case of associative and Lie algebras, G. Hochschild has shown: If the Lie algebra Der(A) of all derivations of A is semi-simple, then A is semi-simple. That the analogous statement holds for Jordan algebras too, has been shown by R. D. Schafer. But in the Jordan case the converse is known not to be true. The following theorem clarifies the situation.

Theorem 1. The conditions (1), (2), (3) are equivalent:
1. Der(A) is completely reducible and tr(D) = 0 for all D ∈ Der(A).
2. A is semi-simple.
3. The bilinear form (D, D) → tr(DD) on the space Der(A) is non-degenerate and Der(A) consists of inner derivations.

In case of algebras A over the reals one gets: If the Lie group Aut(A) of A is compact, then A is semi-simple.

Theorem 2. For a Jordan algebra A over the real numbers the following three conditions are equivalent:
1. Aut(A) is compact.
2. A is the direct sum of simple ideals, which are Jordan fields or formally real algebras.
3. A does not contain any non zero nilpotent elements.

O. Herrmann (Heidelberg) : Über die Anzahl der Zerlegungen einer Menge in Teilmenge.

Es sei p(n) die Anzahl der Zerlegungen einer Menge von n Elementen in beliebig viele paarweise fremde Teilmengen. Diese zahlentheoretische Funktion ist mit Hilfe einer einfachen rekursiven Formel leicht zu berechnen. Im Vortrag wird das asymptotische Verhalten von p(n) für große n bestimmt: Sei t durch n = t X (t — t — 1) : V(t + 1) definiert. Dann ist

p(n) = exp (t log t — t log t + t — 1) : V(t + 1) log (1 + O(t log t)).

Trägt man hier t = n/log n, [1 + O(1/log n)] ein, so erhält man ein wesentlich schwächeres Resultat, nämlich: Zu jedem positiven ε gibt es ein n0(ε), sodass für n ≥ n0(ε) die Ungleichung

exp (—n(1 — ε) log log n) ≤ p(n)/n! ≤ exp (n(1 + ε) log log n)

gilt.

Das asymptotische Verhalten der Funktion p(n) ist wichtig für die Beurteilung einer Modifikation des Entscheidungsverfahrens der elementaren Theorie der abelschen Gruppen nach Wanda Szmirlew.
Dort tritt bei jeder Elimination eines Quantors eine \(2^{(n)} \)-fache Disjunktion auf, wobei \(n \) durch die gegebene Formel bestimmt ist. Diese kann durch eine \(p(n) \)-fache Disjunktion ersetzt werden. Die übrigen bei \(\text{Semideko} \) auftretenden Disjunktionsglieder sind widerspruchsvoll. Sie fallen nach längeren Rechnungen, in welchen oft neue Disjunktionen auftreten, in der Schlußreduktion weg. Die hier gegebene Abschätzung von \(p(n) \) gestaltet die durch die Modifikation des Verfahrens erreichte Einsparung abzuschätzen.

H. J. K a n o l d (Braunschweig): Über eine besondere Klasse von diophantischen Gleichungen.

Wir bezeichnen mit \(p(x) \) ein Polynom mit ganzen rationalen Koeffizienten und betrachten die diophantische Gleichung

\[
p(x) = \sum a_i x^i = y^2.
\]

Wie üblich definieren wir die Höhe von \(p(x) \) durch \(H = \max |a_i| \). Wir betrachten ferner die Hilfsfunktion

\[
q(x) = \sum b_i x^{m/2 - i} \quad \text{mit} \quad m = [n/2].
\]

Die Koeffizienten \(b_i \) werden eindeutig aus dem Gleichungssystem

\[
\sum b_i b_i = a_{-i} \quad (i = 0, 1, \ldots, m)
\]

bestimmt. Wenn \(n \) gerade ist, ist z. B. \(q(x) \) ein Polynom vom Grade \(n/2 - 2 \). Zuerst betrachten wir einige einfache Sonderfälle:

1. \(a_{n/2} = 0 \). Unter dieser Voraussetzung besitzt \(p(x) \) nur ganzzahlige Lösungen, nur für \(|x| \leq H \), \(|y| \leq \max (\sqrt{H} - 1, H - 2) \). Wir setzen ferner zur Abkürzung

\[
b_i = a_{n/2 - i} \quad (i = 1, \ldots, m).
\]

(II) Ein zweiter Sonderfall ergibt sich, wenn

\[
c_i = a_{n/2 - i} \quad (i = 1, \ldots, m).
\]

(II) Ein zweiter Sonderfall ergibt sich, wenn

\[
f = 1 \quad \text{ist} \quad (f \geq 1) \text{ nicht lösbar. Im allgemeinen Fall werden Schranken angegeben für} \quad |x|, \text{ außerhalb derer} \quad \text{konstant ist. Als Sondergebnis folgt, daß} \quad (1) \quad \text{keine Lösungen besitzt, die außerhalb angebbarer Schranken liegen, wenn der Grad} \quad n \text{ gerade ist.}
\]

H. K a u t s c h i t s c h (Wien): Vertauschbare Elemente in Polynomringen und Ringen formaler Potenzreihen.

In einem Polynomring \(K[x] \) über einem kommutativen Ring \(K \) mit Einselement kann man je zwei Polynome außer durch Addition und Multiplikation auch noch dadurch verknüpfen, daß man ein Polynom in das andere einsetzt. Diese Operation ist jedoch im allgemeinen nicht kommutativ und man daher die Frage nach vertauschbaren Elementen stellen. Falls \(K \) der Körper der komplexen Zahlen ist, werde dieses Problem schon von Jacobsthal untersucht. Hier wird der Fall, daß \(K \) ein beliebiger Körper der Charakteristik \(p > 0 \) ist, behandelt. Es werden alle jene Polynome, die mit allen Polynomen aus \(K[x] \) vertauschbar sind, angegeben. Das Ergebnis hängt dabei davon ab, ob \(K \) endlich ist oder nicht. Es werden auch sämtliche Mengen von vertauschbaren Polynomen (genannt \(V \)-Ketten) bestimmt, welche Polynome aller positiven Grade enthalten.

Ähnlich wie in einem Polynomring kann man auch im Ring der formalen Potenzreihen \(K[[x]] \) über einem kommutativen Ring \(K \) mit Einselement die Operation des Einsetzens definieren. Auch in diesem Fall kann man analoge Untersuchungen wie im Polynomring durchführen, insbesondere kann man wieder sämtliche \(V \)-Ketten bestimmen.

K. K i w e k (Saarbrücken): Zur Konstantenreduktion projektiver Schemata.

Es sei \(K \) ein Körper mit einer Bewertung \(v \), \(A \) der Bewertungsmring von \(v \), \(R = K[T_1, \ldots, T_n] \) der graduierte Polynomring, \(R' = A[T] \), \(\tilde{R} = K[T] \) (\(K \) ist der Restklassenkörper von \(R \)). Sei weiter \(R \) ein graduierendes Ideal in \(R \), \(\tilde{R} \) das durch Restklassenbildung entstehende Ideal in \(\tilde{R} \), \(S = R' / R \), \(\tilde{S} = R' / \tilde{R} \). Mit \(A \) und \(\tilde{A} \) werde die zu den graduierenden Ringen \(S \) und \(\tilde{S} \) gehörigen projektiven Schemata bezeichnet.

Auf \(S \) läßt sich nach Roquette eine Pseudobewertung \(v \) wie die wieder mit \(v \) bezeichnet, so einführen, daß \(\tilde{S} = \{ x \in S \mid v(x) \geq 0 \} \) und \(R' \rightarrow \tilde{R} \rightarrow \tilde{S} \rightarrow a \)

kommutiert; hier werden die horizontalen Abbildungen durch die Bewertung definiert. Die Pseudobewertung \(v \) ist träge in dem Sinne, daß jeder \(K \)-Modul endlicher Dimension in \(S \) in einen \(\tilde{K} \)-Modul gleicher Dimension abgebildet wird.

Es wird nun die Kategorie \(\mathcal{M} \) der graduierten \(S \)-Module betrachtet, die sich mit einer trauen Pseudobewertung versehen lassen (alle Untermoduln von \(S \) gehören dazu). Jeder Modul \(M \) bestimmt einen graduierenden \(S \)-Modul \(M' \) und einen graduierenden \(\tilde{S} \)-Modul \(\tilde{M} \). Unter anderem wird gezeigt: Ist \(M \) endlich erzeugt, so auch \(M' \) und \(M \), die Kohomologiegruppen \(H^q(X, M') \) sind endliche \(A \)-Module und es ist

\[
dim_K H^q(X, M) = dim_K H^q(X, \tilde{M}) + n_q + n_{q+1}, \quad q = 0, \ldots, t,
\]

mit nicht negativen ganzen Zahlen \(n_q \); hierbei ist \(n_q = n_{q+1} = 0 \) (Die Tilde bedeutet Garbenbildung).

K. K u n t z e (Gauting): Über die Lösung eines linearen Gleichungssystems, dessen Koeffizienten Polynome sind.

Die Koeffizienten eines linearen Gleichungssystems für \(n \) Unbekannten seien Polynome in \(t \), maximal vom Grad \(m \). Die Lösungen des Systems sind rationale Funktionen \(R(t) = Z(t)/\Theta(t) \) mit Zähler- und Nennerpolynome. Für
die Koeffizienten dieser Zähler und Nennerpolynome läßt sich mit Hilfe eines allgemeinen Polynomsatzes mit anschließendem Koeffizientenvergleich ein lineares Gleichungssystem gewinnen. Die Anzahl seiner Unbekannten beträgt maximal \(m/n + j \) für \(j \neq 0 \). Spezielle Eigenschaften der Matrix \(M \) dieses Gleichungssystems ermöglichen eine Reduktion desselben auf mehrere lineare Gleichungssysteme, deren Matrizen einen wesentlich geringeren Rang besitzen als die Matrix \(M \).

Wir betrachten Abelsche Gruppen. Bezeichnungen: \(Z = \) additive Gruppe der ganzen Zahlen, \(Q = \) additive Gruppe der rationalen Zahlen, \(C(p) = \) quasizyklische Gruppe vom Typ \(p^n \), \(Z(p) = \) additive Gruppe der ganzen \(p \)-adischen Zahlen. Eine reduzierte Gruppe \(G \) wird Ktorsionsgruppe genannt, wenn jede Erweiterung von \(G \) durch eine torsionsfreie Gruppe zerfällt, d. h. wenn \(G \) eine Untergruppe von \(M \) und \(M/G \) torsionsfrei ist; dann ist \(G \) ein direkter Summand von \(M \) oder \(Ext(H;G) = 0 \) für alle torsionsfreien Gruppen \(H \). Eine Ktorsionsgruppe heißt adjungiert, wenn sie keine torsionsfreien direkten Summanden hat. Nun gilt:

(i) Jede Ktorsionsgruppe ist in eindeutiger Weise die direkte Summe einer torsionsfreien Ktorsionsgruppe und einer adjungierten Ktorsionsgruppe.

(ii) Es existiert eine eindeutige Zuordnung zwischen allen teilbaren Torsions- gruppen und allen torsionsfreien Ktorsionsgruppen. Wenn \(D \) eine teilbare Torsionsgruppe ist, dann ist die Zuordnung: \(D \rightarrow \text{Hom}(Q/Z, D) \).

Satz: Sei \(D \) eine teilbare Torsionsgruppe und setzen wir \(D = \sum \Sigma Z(p) \).

Dann ist \(\text{Hom}(Q/Z, D) = \sum \Sigma Z(p) \).

\[\sum \Sigma Z(p) \]

Summe und direkte Summe \(Z(p) \) einer interdirekt Summe (zwischen diskret und komplet).

Man kennt also die Struktur von torsionsfreien Ktorsionsgruppen und damit auch von torsionsreduzierten algebraisch kompakten Gruppen. Als Anwendung kann man die Struktur der kompletten direkten Summe von Gruppen \(G_i \) \((i=1,2, \ldots) \) untersuchen (\(G_i \) ist eine zyklische Gruppe der Ordnung \(p^i \)). Es zeigt sich, daß die \(\sum G_i \) einen maximalen torsionsfreien direkten Summanden hat, der eine torsionsfreie Ktorsionsgruppe ist.

Man nennt zwei Gruppenerweiterungen \(G_1(A) \) und \(G_2(A) \) einer Gruppe \(A \) äquivalent, \(G_1(A) \sim G_2(A) \), wenn es zwei Homomorphismen \(\eta_1, \eta_2 \) gibt, \(\eta_1 : G_1(A) \rightarrow G_2(A), \eta_2 : G_2(A) \rightarrow G_1(A) \), derart daß \(\eta_1 \circ \eta_2 = \eta_2 \circ \eta_1 = \eta \) für alle \(\alpha \). Einige Klassenelemente \((G \mid A) \) ist das System aller Erweiterungen \(G_1(A) \) derart, daß \(G_1(A) \rightarrow G \). Setzt man voraus, daß \(A \) eine endliche Gruppe ist, so kann man folgendes beweisen: Jede Klassenelemente \((G \mid A) \), welche eine endliche Erweiterung von \(A \) enthält, enthält eine bis auf Isomorphie eindeutig bestimmte minimale Erweiterung \(M(A) \) in dem Sinne, daß jede Endomorphismentendomorphismus von \(M(A) \), der \(A \) elementweise festläßt, ein Automorphismus ist.

In der Klassifizierung der einfachen Lie-Tripel-Systeme (= LT-Systeme) nach Lister treten zwei große Klassen auf: In der einen operiert die Derivationsalgebra irreduzibel, in der anderen zerfallen die LT-Systeme in zwei isomorphe derivationsinvariante Untersysteme. Eine Klassifizierung dieser zweiten Klasse, die in zusammenhängenden wichtige Rolle spielt, soll dargestellt werden.

Es sei also \(V = u + \bar{u} \) mit derivationsinvarianten \(U, \bar{U} \), \(\bar{u} \) eine Zerlegung des LT-Systems \(V \). Dann hat man in der Standard-Einbettung

\[L = L_u + u + \bar{u} \]

vom die \(\text{ad} X \text{-Lie-Algebra} L \) gegeben, für die \(\text{ad} X \text{ gilt. Andererseits liefert jede solche Derivation einer einfachen Lie-Algebra auch eine Zerlegung der betrachteten Art. Die einfachen zerfallenden LT-Systeme werden nun dadurch klasifiziert, daß man die einfachen Lie-Algebren bestimmt, in denen es Elemente} x mit \(\text{ad} x \text{ ad} x \text{ gibt. Es ergibt sich eine interessante Analogie zu den Lie-Algebren der beschrankten symmetrischen Gebiete.}

G. Mischler (Tübingen): Nicht-kommutative Dedekind-Ringe.

Nach Jacobson (Theory of Rings, 1943) ist der beschränkte, (rechts- und links-) noethersche Primring \(R \) ein Dedekind-Ring, wenn von Retrieb \(R \) eine Gruppe der kommutativen Rings \(\text{R} \) fällt diese Definition der klassischen zusammen. In diesem Vortrag wird gezeigt, daß ein Dedekind-Ring auch die sämtlichen idealtheoretischen Eigenschaften eines kommutativen Dedekind-Ringes hat.

Satz 1: \(R \) ist ein Dedekind-Ring, dann gilt:

a) Jedes echte epimorphe Bild von \(R \) ist ein selbst-injektiver, artächscher orthogonals-tensorts- und Hauptlinkidealing.

b) Jedes Rechtsideal von \(R \) wird von zwei Elementen erzeugt.

c) \(R \) ist erlich.

d) \(R \) ist endlich viele maximale Ideale, so ist \(R \) ein Hauptrechts- und Hauptlinkidealing.

Der Beweis stützt sich wesentlich auf den Satz 2: Der noethersche Ring \(R \) ist dann und nur dann ein Dedekind-Ring, wenn \(R \) die folgenden Eigenschaften hat:

(1) \(R \) erfüllt für jedes maximale Ideal \(P \) die Ordnungsbedingung bezüglich \(G(P) = \{x \in P \mid x \notin P \} \), und der zugehörige Quotienterring \(\mathfrak{p} \) ist erlich, fastlokal und noethersch.

(2) \(R = \cap \mathfrak{p} \), wobei \(P \) die maximalen Ideale von \(R \) durchläuft.

(3) Jedes endliche, endliche Ideal von \(R \) ist primar und sein Primideal von Null verschiedene.

Satz 5: Jeder Dedekind-Ring \(R \) ist ein voller Endomorphismenring eines endlich erzeugten, projektiven \(D \)-Moduls über einem nullteilerfreien Dedekind-Ring \(D \).

Die Sätze 1, 2 und 3 enthalten die Sätze von Auslander und Goldman (Transact. Amer. Math. Soc. 97 (1960)) über die Struktur der Maximalordnungen über einem kommutativen Dedekind-Ring \(D \) in einer zentralen, einfachen Algebra über dem Quotientenring von \(D \) als Spezialfälle.
Entsprechende Überlegungen ergeben für die reziproke Ordnung r:
\[\omega_r(a) = \sum_{d|a} \nu(d)\]
Durch Bestimmung der endlich vielen Klassen \(N(f) = \{a \in \mathbb{Z} : \nu(a) = r\}\) erhalten wir daraus \(\omega_r(a) = N(f)\), wobei die \(A_r = A_r(a)\) positive rationale Zahlen oder Null sind. Für quadratfreies \(a\) mit \(a \neq 1\) mod 4 und alle ungeraden \(r\) ergibt sich z. B.:
\[A_r = \frac{p}{p!} \prod_{p^2 | r} (p^2 - 1) (p^2 - p - 1)^{-1}\]

Es sei A kommutativer Ring mit Einselement. Mit E bezeichnen wir einen Polynorming \(A[x_1, x_2, \ldots, x_n] \rightarrow \mathbb{Z}\). In diesen erhalten wir die beiden binnären Operationen Addition und Multiplikation durch das Einsetzen von Polynomen noch eine weitere \((n+1)\)-tile Operation, für die wir das Operationszeichen \(\circ\) verwenden.

Wir untersuchen Systeme von \(n\) eindeutigen Abbildungen \(D_1, D_2, \ldots, D_n\) von \(E\) in sich, welche für beliebige Elemente \(f_1, f_2, \ldots, f_n \in E\) noch mindestens zwei der Beziehungen
\[(1)\]
\[D_i(f) + g_i = D_i(f) + D_i(g_i)\]
\[(2)\]
\[D_i(f) g_i = D_i(f)_i + D_i(g_i)\]
\[(3)\]
\[D_i(f_1 \circ f_2 \circ \ldots \circ f_n) = \sum D_i(f_1) \circ f_2 \circ \ldots \circ f_n\]
zu jedem \(i = 1, 2, \ldots, n\) erfüllen. Welts wird untersucht, unter welchen Voraussetzungen es ein System von \(n\) eindeutigen Abbildungen von \(E\) in sich, das zwei der obigen Beziehungen erfüllt, auch der fehlenden dritten Beziehung genügt.

Der Begriff der Diskrepanz einer modulo Eins reduzierten Folge erster Zahlen wird auf topologische Gruppen verallgemeinert. Gegeben eine kompakte abelsche Gruppe mit abzählbarer Basis; dann läßt sich die Diskrepanz einer Folge mit Hilfe eines gewissen ausgezeichneten Ergänzungs- systems der dichten Gruppe \(G\) definieren. Die Größenordnung der Diskrepanz wächst dabei nicht bei Änderung von Homomorphismen oder Übergang zu Untergruppen. Ist \(D_{G}\) die Diskrepanz der ersten \(N\) Glieder einer Folge in \(G\) und \(D_{N}\) bezüglich \(N\) eine Nullfolge, so ist die Diskrepanz gleichverteilt in \(G\); die Umkehrung ist nicht einschränkt. Die Dimension von \(G\) spielt bei dieser Frage eine wesentliche Rolle. Der Satz von Aistleiten-Ehrenfest ist auf nicht total zusammenhängende Gruppen \(G\) übertragbar. In zwei Richtungen verallgemeinert läßt sich die Ungleichung von \(Koksma\) und somit ist die Abschätzung der Güte, mit der Haarsche Integrale durch Mittelwerte approximierbar sind, möglich. Eine geeignete Definition der totalen Variation einer Borel-messbaren Funktion auf \(G\) ist dabei zugelassen. Einige der Theorie der Gleichverteilung modulo Eins neu auftretendes Phänomen ist die Existenz von „gut gleichverteilten“ Folgen, also von Folgen, für die \(N_{G}\) gleichmäßig beschränkt bleibt. — Ein analoges Konzept eines Diskrepanzbegriffes kann man auf kompakten Riemannschen Mannigfaltigkeiten einführen.

Durch $g_k(a,x) = \sum_{t=0}^{m} x^t (1 - x)^{m-t}$ mit $m = \lfloor k/2 \rfloor$ ist ein ganzzahliges Polynom in a und x definiert (für ungerades k wird dieses Polynom durch eine lineare Substitution aus dem Tschebschjeffpolynom erster Art $T_k(x)$ erhalten). Setzt man hier für a ein Element 0 aus dem Galoisfeld $Q = GF(2^q)$, so wird $g_k(a,x)$ ein Polynom über Q. Dieses ist, wie im wesentlichen schon Dickson gezeigt hat, Permutationspolynom genau dann, wenn $g_k(1) = 1$. Für $a = 1$ und $a = -1$ ist die Menge $P(a)$ der Permutationspolynome $g_k(a,x)$ von Q abgeschlossen gegenüber der Komposition von Polynomen. Die Menge $G(a)$ der durch die Polynome von $P(a)$ dargestellten Permutationspolynome von Q bildet daher in diesen Fällen eine abelsche Gruppe. Diese Gruppe ist isomorph zu einer Faktorgruppe der primen Restklassengruppe modulo (q^2-1) nach einer elementar abelschen 2-Gruppe, deren Ordnung von a und q abhängig ist und sich stets angeben läßt.

Analoge Überlegungen wie für Q lassen sich durchführen für den Restklassenkörper R der ganzen Zahlen modulo einer Primzahlpotenz p^2. Es scheint in diesem Falle jedoch nicht leicht zu sein, die Struktur der abelschen Gruppe $G(a)$ zu ermitteln.

H. Pahlings (Gießen): Projektive Darstellungen über algebraischen Zahlkörpern.

Satz: Ist G eine endliche abelsche Gruppe mit dem Exponenten e, so läßt sich jede irreduzible projektive Darstellung von G im Körper der e-ten Einheitswurzeln realisieren.

A. Pfister (Göttingen): Zur Darstellung definiter Funktionen als Summe von Quadern.

E. Artin hat gezeigt, daß jede positiv definite rationale Funktion $f(x_1, \ldots, x_n)$ mit reellen Koeffizienten Summe von Quadern ist (19. Hilbertsches Problem). In Verschärfung dieses Resultats läßt sich beweisen, daß $f(x_1, \ldots, x_n)$ bereits als Summe von 2^n Quadern dargestellt werden kann.

Zum Beweis wird außer einigen neuen, aber elementar nachgewiesenen über quadratischen Formen folgender Satz von Tsen benötigt: "In einem Funktionenkörper vom Transzendenzgrad n über einem algebraisch abgeschlossenen Körper besitzt jede Form vom Grad d in mehr als 2^n Veränderlichen eine nichtriviale Nullstelle.

S. Picard (Neuchâtel): Sur les groupes multiplicatifs définis par un ensemble irréductible de générateurs liés par un ensemble donné de relations fondamentales.

Einensemble A de générateurs d'un groupe multiplicatif G est dit irréductible au sens large si aucun élément a de A ne peut être obtenu par composition finie d'éléments de $A - \{a\}$. Tout groupe multiplicatif ne possède pas nécessairement de tels ensembles de générateurs. L'ensemble A de générateurs du groupe multiplicatif G est dit irréductible au sens strict si quelle que soit la partie B de A, de puissance >1, et quelle que soit la partie C de G, de puissance inférieure à celle de B, l'ensemble $A - B$ n'est pas iranneable à l'ensemble A irréductible de G. Tout ensemble A de générateurs irréductible au sens strict de G est aussi irréductible au sens large, mais la réciproque est en défaut. Un groupe G est dit fondamental s'il possède au moins un ensemble A de générateurs, irréductible au sens strict. Il est dit quasi fondamental si l'il possède au moins un ensemble de générateurs irréductible au sens large. Tout ensemble irréductible au sens strict A d'un groupe fondamental G est appelé une base de ce groupe et la puissance de A est appelée le rang de G. Le rang est un invariant d'un groupe fondamental. Tout groupe fondamental est quasi fondamental, mais la réciproque n'est pas vraie. Soit G un groupe quasi fondamental et soit A un ensemble irréductible au sens large de générateurs de G. Une relation entre les éléments de A est une égalité de la forme $f_h = 0$ et h sont deux relations finies d'éléments de A qui représentent un même élément de G. Une relation est dite triviale si elle découle des axiomes de groupe. Elle n'est pas triviale dans le cas contraire. Soit F un ensemble donné de relations reliant entre eux les éléments de A. On dit que F est un ensemble exhaustif de relations fondamentales si les éléments de A n'ont aucune d'elles triviale, si aucune d'elles ne découle des autres relations de F et de relations triviales et si toute relation entre éléments de A découle de celles de F et de relations triviales. Étant donné un ensemble A d'éléments qui se composent suivant une loi de groupe multiplicatif, irréductible au sens large, lié par un ensemble donné F de relations dont aucune ne découle des autres et de relations triviales, le problème se pose de savoir s'il existe un groupe multiplicatif G engendré par A et dont F est un ensemble exhaustif ou non de relations fondamentales. L'étude est simplifiée dans le cas où A et F sont finis. La question posée a été résolue, en particulier, dans le cas où A se compose de trois éléments a_1, a_2, a_3 liés par
I. Piiper (Hamburg): Das Dicksonische Verfahren auf inseparablen lokalen Algebren.

Unter einer lokalen Algebra \(F,E,K \) versteht man eine assoziative Algebra \(F \) über einem kummutativen Körper \(K \), die ein Einselement und genau ein maximales Ideal \(F-E \) enthält.

Das Dicksonische Verfahren, auf \((F,E,K) \) angewandt, besteht darin, mit Hilfe einer Abbildung \(\varphi: E \to A(F) : a \mapsto a_{\varphi} \) der Einheitengruppe von \(F \) in die Automorphismengruppe von \(F \) die partielle Operation:

\[
E \times F \to F : (a,f) \mapsto a_{\varphi}(f)
\]

in \(F \) zu erklären. Wenn diese Operation, soweit definiert, assoziativ ist, dann genügt \(\varphi \) für \(a,b \in E \) der Gleichung \(a_{\varphi}b_{\varphi} = (a_{\varphi}(b))_{\varphi} \), d. h. \(\varphi \) ist eine gekoppelte Abbildung von \(E \) in \(A(F) \).

Zur Konstruktion einer solchen Abbildung \(\varphi \) für eine inseparable Algebra \((F,E,K) \) wird zunächst unter der Voraussetzung \(F-E = 0 \) oder \(F-E \subseteq K = p \) (prim) die Struktur von \(F \) bestimmt. Dann wird untersucht, welche Automorphismen von \(K \) sich zu Automorphismen von \(F \) fortsetzen lassen und wann diese Fortsetzung eindeutig bestimmt ist.

Es können dann Bedingungen angegeben werden, unter denen man aus einer gekoppelten Abbildung \(\varphi \) von \(K \to (0) \) in \(A(F) \) eine solche von \(F \) in \(A(F) \) konstruieren kann.

Ein Kompositionsring \(R \) ist ein Ring mit einer dritten zweistelligen Operation, die assoziativ und bezüglich der Addition und Multiplikation rechtsdistributiv sein soll. Sie heisse „Komposition“ und werde mit „\(\circ \)“ bezeichnet. Jeder Kompositionsring ist isomorph zu einem Ring von Funktionen eines Konstantenringes \(K \) in sich, mit der Substitution als Komposition. Ist \(K \) geordnet, so erhebt sich die Frage, ob sich diese Ordnung zu einer Anordnung in ganz \(R \) erweitern läßt, sodaß für alle \(f,g \in R \) hat \(f \circ g \geq 0 \).

Es zeigte sich, daß eine solche Erweiterung unter sehr schwachen Voraussetzungen nicht existiert und nur in Ringen „fast konstanter“ Funktionen gelingen kann, wie z. B. in den Kompositionsringen \(R_2 \) aller \(k \times k \), \(k \leq 2 \), und \(R_3 \) von charakteristische Funktion einer festen Menge \(A \) negativer Konstanten bezeichnet.

Es empfiehlt sich daher, einen etwas allgemeineren Ordnungsbegriff einzuführen, bei dem der damit nur für \(g \circ k \) gefordert wird. Ist \(I \) ein geordneter Integritätsbereich, so läßt sich \(I \) in \(\mathbb{R} \) erweitern, nicht aber im endlichen Sinne ordnen, nämlich lexikographisch. Wenn \(I \) insbesondere die Mengen der ganzen, rationalen oder reellen Zahlen bezeichnet, so gibt es außer der lexikographischen Ordnung keine weitere. Man kann beweisen, daß sich ein Kompositionsring rationaler Funktionen auch im neuen Sinn nie- mals ordnen läßt.

Für ein kompakter, separabler Hausdorffraum \(X \), sei \(\alpha \) eine Matrix \(\alpha_{jk} = 1,2, \ldots \) mit \(\alpha_{jk} = 0 \), \(j \leq k \), \(j = 1,2,3 \). Man erhält die Hilfsbedingung: für jedes \(\delta > 0 \) sei \(\Sigma \alpha_{jk} < \infty \) \((\alpha_{jk} = \Sigma \alpha_{jk} \subseteq X) \).

\(\delta = \mu \) sei eine Folge von Wahrscheinlichkeitsmaßen auf \(X \). Eine Folge von Punkten \(\omega = (x_n) \) heißt \(A \)-gleichverteilt, wenn

\[
\lim \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu(f)) \right) = 0
\]

für alle stetigen, reellwertigen Funktionen \(f \) auf \(X \). Wie ist die Menge aller gleichverteilten Folgen mit \(Q \) bezeichnet und sie ist eine Teilmenge von \(\sum X_i \). Die Menge aller Folgen von Wahrscheinlichkeitsmaßen über \(X \) werde mit \(R \) bezeichnet. Eine Folge \(x = (x_n) \) heißt \(A \)-gleichverteilt, wenn

\[
\lim \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu(f)) \right) = 0
\]

für alle stetigen, reellwertigen Funktionen \(f \) über \(X \). Nun wird durch jedes \(x = (x_n) \) ein Maß \(\tau \) mit \(\tau(f) = \sum_{i=1}^{n} (x_i - \mu(f)) \) auf \(P \) definiert.

Satz: \(\tau \) ist genau dann \(A \)-gleichverteilt, wenn \(\tau(f) = 0 \), \(f = 1 \). Dieser Satz läßt sich übertragen auf den Fall von \(A \)-unabhängigen Folgen. Dabei heißt eine Folge von Folgen eines endlichen Produktes von kompakten, separablen Hausdorffräumen \(A \)-unabhängig, wenn jedes \(A \)-Vereinigungsmäß der Folge ein Produktmaß ist.

Es werden spezielle Abbildungen des Einheitswürfels in sich betrachtet, welche sich als ergodisch erweisen. Es wird die Existenz eines invarianten Masses nachgewiesen. Für die Dichte wird eine funktionalgleiche aufgestellt und dieselbe iterativ gelöst, wobei die Konvergenzgeschwindigkeit angegeben wird. Dies gestattet Anwendungen auf Kettbrauche und g-adische Entwicklung, die Methode ist auf Jacobigleichungen übertragbar. Auf Fragen der Hausdorffdimension, Existenz singulärer Maße und einige verwandte Probleme wird hingewiesen.

O. Tamaschke (Tübingen): Zur Theorie der Permutationsgruppen.

Ein Tripel \((\Omega,G) \) aus einer Menge \(\Omega \), einer Gruppe \(G \), und einer äußeren Verknüpfung von \(\Omega \) mit \(G \) als Operatorenbereich, für die \(\alpha(g(x)) = (\alpha g)(x) \) und \(\alpha g = \alpha \) gilt für alle \(\alpha \in \Omega \) und \(g \in G \), heißt eine Permutationsstruktur. Ein Paar \((\Omega,G) \) aus einer Abbildung \(\varphi: \Omega \to \Omega \) eines Homomorphismus \(\varphi: \Omega \to \Omega \) und einem Homomorphismus \(\psi: G \to G \) heiße ein Homomorphismus der Permutationsstruktur \((\Omega,G) \), wenn \((\alpha g)(x) = (\alpha \psi(g))(x) \) gilt für alle \(\alpha \in \Omega \) und \(g \in G \). Eine Klassifikation dieser Homomorphismen führt zum Begriff des \(n \)-fachen Homomorphismus. Es sei \(\Omega \) ein homogener Raum (d. h. \(G \) wirkt transitiv auf \(\Omega \)) und \((\alpha \psi(g))(x) = \psi(g)(\varphi(x)) \).
n-facher Homomorphismus. Der Kern \(K = \ker_n(\varphi, \psi) = \{g \in G | (\varphi \circ g)(\psi) = \varphi \} \) von \((\varphi, \psi) \) bezüglich \(\alpha \in \Omega \) ist eine Untergruppe von \(G \) mit der folgenden Eigenschaft:
\[
H \subseteq K \text{ und } K_g(\bar{H}_1 \cup \ldots \cup \bar{H}_n) = K(g, \bar{K}_1 \cup \ldots \cup \bar{K}_n)
\]
Für alle \(g \neq e, \ldots, x_0 \neq e \). Eine solche Untergruppe \(K \) heißt \(n \)-fach \(G/H \)-normal. Diese Aussage über \(\ker_n(\varphi, \psi) \) ist Teil eines Homomorphismsatzes für homogene Räume. Daneben existieren auch ein erster und ein zweiter Isomorphismsatz für homogene Räume. - Ist \(K \) eine \(n \)-fach \(G/H \)-normale Untergruppe von \(G \), so ist das Paar \((\varphi, \psi) \) aus der Abbildung \(\varphi : Hg \rightarrow Kg \) und dem identischen Automorphismus \(\psi \) von \(G \) ein \(n \)-facher Epimorphismus des homogenen Raumes \((K,g,H,\bar{K},\bar{G}) \), der definiert ist durch die Nebenklassen \(Hg \subseteq K \), \(\alpha \in G \), auf den homogenen Raum \((K,g,H,\bar{K},\bar{G}) \) mit \(K = \ker_n(\varphi, \psi) \). - Der homogene Raum \((H,\bar{G},\bar{H},\bar{K},\bar{G}) \) kann als eine Faktorstuktur von \(G \) modulo \(H \) aufgefasst werden. Es werden \(n \)-fach \(G/H \)-subnormale Untergruppen und \(n \)-fache \(G/H \)-Subnormalketten definiert mit den durch die Glieder dieser Ketten definierter homogeneren Räumen als deren Faktoren. Für \(n = 1 \) gelten der Zassenhausche Vier-Untergruppen-Satz von Jordan und Hölzler für die \(1 \)-fachen \(G/H \)-Kompositionskeitsatz. - Jedem homogenen Raum \((H,\bar{G},\bar{H},\bar{K},\bar{G}) \) wird die Hallgruppe \((H,g,H,\bar{K},\bar{G}) \) (bezüglich der Komplexmultiplikation) zugeordnet, die von allen \(Hg \subseteq K \), \(\alpha \in G \), erzeugt wird. Sie spielt die Rolle einer Art von „Endomorphismusring“ des homogenen Raumes \((H,\bar{G},\bar{H},\bar{K},\bar{G}) \). Für diese Hallgruppen existiert eine eigene Theorie [Math. Z. 104/1969, 74-200]. Die Isomorphieklassifikation \((H,\bar{G},\bar{H},\bar{K},\bar{G}) \) hieße der Typ des homogenen Raumes \((H,\bar{G},\bar{H},\bar{K},\bar{G}) \).

A. Thedy (Aarhus): Über Algebra, die der polarisierten Fundamentalform genügen.

Man kann die Jordan-Algebren als die Klasse der kommutativen Algebren anschen, die der Fundamentalform, einer gewissen von N. Jacobson entdeckten Relation sieben Grades, genügen. Betrachtet man allgemeiner die Klasse aller endlich-dimensionalen Algebren, die der Fundamentalform genügen, so erhält man eine Klasse nicht kommutativer Jordan-Algebren, zu denen neben den Jordan-Algebren die assoziativen, quasi-assoziativen und nodalen Algebren gehören.

Der Vortrag befaßt sich mit den Eigenschaften dieser Algebren, der Klassifikation der einfachen und mit dem Wedderburnschen Zerlegungssatz.

U. Tietze (Saarbrücken): Verzweigte Erweiterungen algebraischer Funktionenkörper.

Es sei \(K \) ein algebraischer Funktionenkörper in einer Unbestimmten über dem Konstantenkörper \(k \); es sei \(D(K) \) die Divisorenklassengruppe von \(K \).

Zunächst wird das Verhalten der Divisorenklassengruppe bei verzweigten Erweiterung untersucht. Es sei \(L \) eine endliche separable Erweiterung von \(k \); \(\varphi, \psi \) seien diejenigen \(k \)-Bewertungen von \(K \), die in \(L \) verzweigt sind; es bezeichnen \(c_\varphi \) das \(k \)-V. der Verzweigungszahlen von \(\psi \) in \(L \).

Es sei \(c \) \(c = \psi \) die Konorm; \(C = c \) der Kern. Dann gilt:

Satz 1: \(D(L)/cD(K) \) enthält eine endliche Untergruppe, deren Ordnung von \(c_\varphi \sqrt{K} / |K : K' \) geteilt wird.

Im Anschluß an diesen Satz stellt sich die Frage nach seiner Anwendbarkeit. Es gibt zu jedem Paar natürlicher Zahlen \(m, n \) natürlich endlich viele separable Erweiterungen vom Grade \(m \) von \(K \), die für mindestens \(n \) Bewertungen von \(K \) verzweigt sind; im Falle der Primzahlcharakteristik gilt darüber hinaus:

Satz 2: \(K \) besitzt Primzahleigenschaft; \(p \) sei eine beliebige Primzahl. Zu jeder natürlichen Zahl \(n \) existieren dann endlich viele galoisische Erweiterungen vom Grade \(p \) von \(K \), die für mindestens \(n \) Bewertungen von \(K \) verzweigt sind.

Diese Sätze gelten auf endlich-algebraische Zahlkörper übertragen: Es gilt die Behauptung von Satz 2 ([2]); statt Satz 1 gilt: \(D(L) = \sqrt{K} \) geteilt \(r \) (Einheitenrang von \(L \)).

[2] Lamprécht, Archiv M. 18

J. Tamm (Hamburg): Lokale Klassen universeller Algebren.

Unter einer universellen Algebra versteht man eine Menge mit einem System mehrstelliger Operationen. \(K \) und \(\Gamma \) seien zwei Klassen universeller Algebren und \(K, \Gamma \). Man definiere \(L/K \) als die Klasse aller Algebren aus \(\Gamma \), denen sämtliche Elemente Teilalgebren erzeugen, die zu Algebren aus \(K \) isomorph sind. Z.B. sei \(\Gamma \) die Klasse aller Klassen von der Ordnung 1 oder \(p \) (Primzahl): dann ist \(L/K \) die Klasse aller Algebren vom Exponenten \(p \). \(K \) heife \(L \)-lokal, falls \(K = L/K \).

E. Visotschnig (Graz): Minimale Wege in einem endlichen, bewerteten Graphen.

In einer ganzen Reihe von Fällen der Praxis tritt das Problem auf, in einem endlichen, gerichteten, bewerteten Graphen Wege mit minimaler Bewertung zu finden. Für den Spezialfall, minimale Wege von einem gegebenen Anfangsknoten \(k_0 \) zu einer Menge \(Y \) von Endknoten zu finden, existieren mehrere Algorithmen. Der Algorithmus von Dijkstra (unabhängig davon in beinahe identischer Form vorgeschlagen von E. W. Dijkstra), modifiziert von R. Albrecht, zeichnet eine Menge \(R \) von Knoten, die eine Bewertung („Entfernung“ vom Anfangsknoten) und eine Menge \(M \subset R \), deren Bewertung im Laufe des Algorithmus nicht mehr verbessert werden kann, unter der Menge \(K \) aller Knoten des Graphen, aus. Bei jedem Algorithmusschritt wird \(M \) vergrößert und \(R \) wenn möglich bis entweder \(Y \subset M \) gilt oder \(M = R \) nicht mehr vergrößert werden kann (alle von \(k_0 \) erreichbaren Knoten erreicht sind). Bei einem Graphen von \(N \) Knoten werden die Lösungen der gestellten Maximal \((N-1)!/2 \) Adr Aufgabe maximal \((N-1)!/(N-1) \) Adr Aufgaben und \((N-1)!/(N-1-N) \) Vergleiche benötigt. Der Algorithmus von Moore, ebenfalls modifiziert von R. Albrecht, zeichnet unter der Menge \(K \) aller Knoten

The general cubic Diophantine equation was first studied by Davenport und Lewis in J. London Math. Soc. 39/1964, 657–672. I investigated it further in Proc. London Math. Soc. (3) 17/1967, 271–296. Writing the equation as $\Theta(x_1,\ldots,x_n) = 0$, let C be the cubic of the polynomial Θ; then the equation is more difficult if C is reducible over the rational field. Assuming therefore that this is the case, we may transform the variables suitably suppose that $C = x_n Q(x_1,\ldots,x_{n-1})$, and define $f = f(x_1,\ldots,x_{n-1}) = Q(x_1,\ldots,x_{n-1},0)$. Now the equation is still more difficult if f is definite, so suppose further that f is positive-definite. This case is excluded in both the papers quoted above; but I have now obtained some results for it, valid for $n \geq 15$. The equation can, in many ways, be put into the shape.

$$(ax_0 + b) S(x_1,\ldots,x_n) = R(x_1,\ldots,x_{n-1}),$$

$$(a \neq 0, \deg R \leq 2).$$

It is necessary to consider, for large primes p, the congruence

$$R(x_1,\ldots,x_{n-1}) \equiv 0 \pmod{p}.$$

Sufficient conditions for the solvability, in integers x_i, of an equation $(n \geq 15)$ of the type considered are: (i) the congruence $Q \equiv 0$ is solvable for every modulus, (ii) the quadratic form Q is indefinite, (iii) however the equation is put into the shape (1), $\deg R = 2$ and (2) is solvable for all large p.

Ist M die Menge all der Elemente eines Fastkörpers, die endliche Summe von Quadratprodukten $a_1^2\ldots a_n^2$ sind, so kann man die angeordneten Fastkörper F durch die Eigenschaften

$$(1) \quad F \in M$$

$$(2) \quad a \in F \text{ folgt } x = a \text{ in } F \text{ für jedes } x \neq 0, x \in M$$

charakterisieren. Es gibt zwei Typen von angeordneten Fastkörpern, je nachdem ob die Aussage

$$(*) \quad a < b \text{ und } 0 < c \text{ folgt } a.c < b.c$$

gilt oder nicht. Die Fastkörper, die $(*)$ erfüllen, lassen sich durch Eigenschaften einer Bewertung kennzeichnen, während das bei den anderen nicht möglich ist.

Es sei S eine Halbgruppe und Σ eine Unterhalbgruppe zweizählig, regulärer Elemente von S. Eine Rechtsquotientenhalbgruppe $T = Q(\Sigma, S)$ ist definiert als S umfassende Halbgruppe mit Einselelement, in der jedes Element $a \in \Sigma$ ein Inverses besitzt und deren Elemente sich als Rechtsquo- tienten $a\Sigma^{-1}$ mit $a \in S$, $a \in \Sigma$ schreiben lassen (vgl. H. J. Weinert, Acta Math. Acad. Hung. 16/1965, 269–267). Eine partielle Ordnung O_S von S läßt sich genau dann zu einer solchen partiellen Ordnung O_T von T fortsetzen, die O_S in S induziert, wenn für O_S aus $x \leq y \leq z$ mit $y \in S$ und $x, z \in \Sigma$ stets $a \leq b$ folgt $(*)$. O_T ist dann durch O_S eindeutig bestimmt, und der Satz enthält die Fortsetzbarkeit von linearen Ordnungen von S auf T. Weiterhin existiert zu einer partiellen Ordnung O_S von S mit $(*)$ stets genau eine maximale Rechtsquotientenhalbgruppe $T = Q(\Sigma, S)$, auf welche O_T fortsetzbar ist. Das allgemeine Problem der Fortsetzbarkeit einer beliebigen partiellen Ordnung O_S von S auf eine partielle Ordnung von T ist damit auf die Frage zurückgeführt, ob sich O_S bereits in S zu einer partiellen Ordnung erweitern läßt, die $(*)$ erfüllt. Dies ist stets möglich, wenn die Rechtsquotientenhalbgruppe $T = Q(\Sigma, S)$ zugleich Linksquotientenhalbgruppe $Q(\Sigma, S)$ ist, insbesondere also wenn Σ im Zentrum von S liegt oder für den kommutativen Fall, aber nicht allgemein, wie Gegenbeispiele zeigen.

Ein konvexer Körper, dessen Volumen mehr als die Hälfte seiner Oberfläche beträgt, enthält einen Gitterpunkt. Dieser Satz wird für den R^d bewiesen, nachdem er 1962 von Bender für den R^3 bewiesen wurde. Das Problem lautet genauer so: Sei K ein konvexer Körper, V sein Volumen, F seine Oberfläche, Θ, die Menge der konvexen gitterfremden Körper des R^n und

$$s(n) = \sup \left\{ \frac{V(K)}{F(K)} / K \in \Theta \right\}.$$

Man zeigt leicht $s(n) \geq 1/2$ für $n \geq 2$. Bender zeigte $s(2) = 1/2$. Mit Hilfe von Isoperimetrie, Steinererche und Schwarzscher Symmetrization erhält man $s(3) = 1/2$. Abschließend wird ein allgemeine Symmetrization angegeben, die die Isoperimetrie-Eigenschaften, die Steinererche und die Schwarzschische Symmetrization als Spezialfälle enthält und mit wahrhaftig als das geeignetste Hilfsmittel, in den beiden Satz für $n > 3$ zu beweisen.
SEKTION II:

Analysis

T. Akazawa (Kanazawa) : (3|2)-dimensional measure of singular sets of some Kleinian groups.

Let us denote by B_α the domain bounded by N mutually disjoint circles $\{K_i\}_{1=1}^N$. Take $2p(N>2p)$ boundary circles $\{H_i, H'_i\}_{1=1}^p$ from $\{K_i\}_{1=1}^N$.

Let S_1 be a hyperbolic or loxodromic generator which transforms the inside of H_i onto the inside of H'_i. Then $\{S_i\}_{i=1}^p$ generate a Schottky group G_i. Let $\{T_j\}_{j=p}^m$ be the elliptic transformations with period 2 corresponding to the remaining boundary circles $\{K_j\}_{j=p+1}^m$, where $N - 2p = q$. Then $\{T_j\}_{j=p+1}^m$ generate a properly discontinuous group G_i.

By combining the two groups G_i and G_j, a new group $G = G_i \cdot G_j$, which is generated by $\{S_i\}_{i=1}^p$ and $\{T_j\}_{j=p+1}^m$, is obtained and is called a Kleinian group. It is easily seen that the fundamental domain of G coincides with B_α and G is properly discontinuous. We introduced the following function

\[(1) \quad f_{S}(x) = \frac{1}{R_i} \sum_{T_j} \frac{1}{|T_j \cdot x - T_j \cdot | \cdot T_j \cdot y|^{2}} \quad (T_j \neq T_{j+1}, \quad 0 < x < 4),\]

where R_i and T_j are generators of G or their inverses and R_i is the radius of isometric circle of T_j. We call $f_{S}(x)$ the μ-dimensional computing function of order ν on T_i, where x varies on the closed disc bounded by H_α, the boundary circle of B_α mapped onto the boundary circle H'_α by T_i. We have the following theorem: If there exists some positive integer ν so that it holds

\[(2) \quad f_{S}(x) > \nu \geq 1, \quad (k = 1, \ldots, N)\]

on the singular subset E contained in the boundary circle H_α ($k = 1, \ldots, N$) of B_α, respectively, then the ν-dimensional measure of the singular set E of G is positive.

By using the condition (for $\mu = 2$) of this theorem, we showed the existence of Kleinian groups with fundamental domains bounded by circles whose singular sets have positive 1-dimensional measure. We note that $m_{2}(E)$ is always zero in the case of three circles. In the case of $N = 3$, it is almost impossible to use the condition (2), since the number N of the boundary circles of the fundamental domain become considerably large and each value of computing functions of N boundary circles must be calculated. Therefore we gave the simple and useful sufficient condition with respect to computing function, and by using this condition we showed the existence of Kleinian group G for which $m_{2}(E)$ is positive.

E. J. Akutowicz (Montpellier) : Mouvement-périodicité.

Nous donnerons une solution très-simplifie du problème de l'analyse et de la synthèse spectrale des distributions mouvenée-périodiques. Nous opterons dans un espace M de distributions qui est du droit fort d'un espace vectoriel topologique M de fonctions holomorphes dans une bande horizontale contenant l'axe réel et assez rapidement décroissantes aux extrémités de cette bande.

A. Ambauer (Genf) : Über die Koeffizienten von Causen einer Laplace'schen Quadraturformel.

Die von H. Bäcker (1) erwähnten Zahlen $\nu^{(m)}$, $\nu^{(m)}$, ... $\nu^{(m)}$ können auf folgende Weise definiert werden:

Es existiert eine einzige reelle Zahl $\nu^{(m)}$, sodaß es eine reelle Funktion $f(x)$ gibt, die auf dem Intervall $0 < x < \nu^{(m)}$ bestimmt ist, und welche folgende Eigenschaften besitzt:

1. Die ist kontinuierlich, ebenso wie ihre ersten $m - 2$ Ableitungen.
2. Wenn $k - 1 < x < \nu^{(m)}$ $k = 1, 2, \ldots, m$ ist, dann ist $f(x)$ ein Polynom $f_{S}(x)$ des Grades $\leq m - 1$.
3. Man hat $f_{S}(x) = \nu^{(m)}$.

wobei $B_{\nu^{(m)}}$ die Bernoulli'sche Polynome bezeichnet.

Insbesondere ist $\nu^{(m)}$

$m = 1: \quad f_{S}(x) = \nu^{(m)}$.
$m = 2: \quad f_{S}(x) = \nu^{(m)}$.
$m = 3: \quad f_{S}(x) = \nu^{(m)}$.

Im allgemeinen ist

\[\nu^{(m)} \geq m - 1 + \nu^{(m)} \geq m - 1 + \nu^{(m)} \geq m - 1 = f_{S}(x).\]

C. Banica - A. Dumitriu Stanisila (Bukarest) : Some properties of analytic coherent sheaves on Stein spaces.

The aim of this paper is to prove some properties of analytic coherent sheaves on complex spaces. First we show that on a Stein space such a sheave may be written as a suitable double inductive limit of an inductive system of coherent sheaves which possess a globally finite presentation. Thus, we have the following: If X is a Stein space and $\Gamma_0X = \Gamma_0\Gamma_0X$, then the canonical map $\Gamma_0X \rightarrow \Gamma_0\Gamma_0X$ is bijective. Also, if X is a Stein space and $\Gamma_0X = \Gamma_0\Gamma_0X$, then the canonical map $\Gamma_0X \rightarrow \Gamma_0\Gamma_0X$ is bijective. Also, if X is a Stein space and $\Gamma_0X = \Gamma_0\Gamma_0X$, then the canonical map $\Gamma_0X \rightarrow \Gamma_0\Gamma_0X$ is bijective. Also, if X is a Stein space and $\Gamma_0X = \Gamma_0\Gamma_0X$, then the canonical map $\Gamma_0X \rightarrow \Gamma_0\Gamma_0X$ is bijective. Also, if X is a Stein space and $\Gamma_0X = \Gamma_0\Gamma_0X$, then the canonical map $\Gamma_0X \rightarrow \Gamma_0\Gamma_0X$ is bijective. Also, if X is a Stein space and $\Gamma_0X = \Gamma_0\Gamma_0X$, then the canonical map $\Gamma_0X \rightarrow \Gamma_0\Gamma_0X$ is bijective.

For a ringed space \((X,\mathcal{O})\) we note by \((X,\mathcal{O}_{red})\) its reduced, whose structural sheaf is \(\mathcal{O}_{red}\) (\(\mathcal{O}\) — the ideal of \(\mathcal{O}\) of nilpotent sections). If \(\mathcal{H}(X,\mathcal{O}) = 0\) for any \(q \geq 1\) and any \(\mathcal{O}_q\)-module \(\mathcal{O}\), the space \(X\) is named cohomologically trivial. We show the following result:

Theorem. Let \((X,\mathcal{O}_{red})\) be a ringed space and \(X\) a denumerable reunion of relative compact open sets. \((X,\mathcal{O}_{red})\) is cohomologically trivial if and only if \((X,\mathcal{O}_{red})\) is so.

As a consequence, we deduce that a preschema is affine if and only if its reduced preschema is affine and the same assertion for the analytic spaces: An analytic space verifies theorem B of Cartan if and only if its reduced space has the same property.

The purpose of the work is to characterize those spaces whose topology is similar to that of preschemas. One defines the notion of the spectrum of a lattice and proves the following: A topological space is Kolmogoroff in which any irreducible closed set has a generic point if and only if it is the spectrum of a complete lattice. One gives some transition propositions between the properties of a lattice and its spectrum. The announced result is completed by the characterization of the quasi-compact spaces having a basis of quasi-compact open sets; indeed, such spaces are exactly the prime spectra of some quasi-rigs (additive-multiplicative commutative semigroups having the multiplication distributive). Finally we consider some examples: the prime and maximal spectrum of a ring, the open-prime spectrum of a topological ring, the closed-maximal spectrum of a Stein algebra; also we study a little the lattice of the quasi-coherent ideals of a preschema, etc.

K. W. Bauer (Bonn): Automorphe Lösungen partieller Differentialgleichungen.

Der Begriff der automorphen Lösungen von partiellen Differentialgleichungen wird als Verallgemeinerung der automorphen Funktionen der klassischen Funktionentheorie eingeführt. Damit gewinnt die Frage der allgemeinen Darstellung solcher automorphen Lösungen, ihre Konstruktion durch geeignete Differentialinvarianten und das Studium ihrer funktionentheoretischen Eigenschaften ein besonderes Interesse. In diesem Zusammenhang werden die Differentialgleichungen

\[(1 + \varepsilon z)^p w + e_n (n+1)w = 0, \quad n \in \mathbb{N},\]

und

\[D^{-1}w = 0 \quad \text{mit} \quad D = (1 + \varepsilon z)^q \frac{\partial}{\partial z}, \quad n \in \mathbb{N}_0(0),\]

betrachtet, die für \(\varepsilon = -1\) invariant gegenüber den Kugeldrehungen und für \(\varepsilon = +1\) gegenüber den Automorphismen des Einheitskreises sind. Abschließend wird auf eine Möglichkeit der Verallgemeinerung im Falle von partiellen Differentialgleichungen mit zwei unabhängigen komplexen Variablen hingewiesen.

Im Anschluß an Fleming-Nieta (J. Math. Mech. 15/1966, 777) wird folgende Aufgabe behandelt. Man minimiere die mathematische Erwartung des unterhalb stetigen Funktionsals \(F(X(t),U(t);t \geq 0)\) wobei der stochastische Prozeß \(X(t)\) (mit Werten in einem Hilbert-Raum) Lösung der Gleichung:

\[dX(t) = A(t,X(s),U(s);s \leq t)dt + B(t,X(s),W(s);s \leq t)dW(t) (t \geq 0)\]

unter der Anfangsbedingung \(X = X_0 (t \geq 0)\) ist. \(X_t\) ist ein gegebener Prozeß, \(W\) der Wiener-Prozeß. Hier wird das Problem in den Rahmen der Theorie der generalisierten Steuerung gestellt ("relaxed control", L.C. Young-Warga-M. Shane). d.h. \((U(t))\) ist ein maßwelter Prozeß. Die Behandlung gliedert sich in

1. Kompaktheit des Raumes der generalisierten stochastischen Steuerung;
2. Existenz und Eindeutigkeit der Lösung der Differentialgleichung, stetige Abhängigkeit der Lösung von der Steuerung;
3. Existenz einer optimalen Steuerung.

Bei gegebenen, aus den Räumen \(Z_n (n = 1,2,\ldots)\) entnommenen Mengenklassen \(\mathcal{A}_n (\mathcal{B}_n)\) definiere man \(\mathcal{A}_k\) als die durch die Mengen \(\mathcal{A}_n\) erzeugten \(\sigma\)-Körper. Dann erstreckt sich die Assoziativität der Mengenmultiplikation auf die Klassenmultiplikation, falls für jedes \(n\) die Klasse \(\mathcal{A}_n\) höchstens abzählbar viele Mengen enthält, deren Vereinigung gleich \(Z_n\) ist. Dieser Verallgemeinerung der Assoziativität von \(\mathcal{A}_k\) auf \(\mathcal{A}_n\) ist es gelungen, indem \(\mathcal{A}_n\) erlauben insbesondere die Assoziativität von \(\mathcal{A}_k\) auf \(\mathcal{A}_n\) durch ideierte eine erzeugende Klasse zu ersetzen und kann auf Grund von Gegenbeispielen ohne die erwähnte Eigenschaft nicht garantiert werden.

P. B. T. Braumann (Lissabon): Assoziativität und Berandung des Maximalproduktes von endlich vielen Maßräumen.

Gegeben seien die Maßräume \((Z_n,\mathcal{A}_n,\mu_n) (n = 1,\ldots,N\ \text{endlich})\). Es soll die folgende Definition des Maximalproduktes \(\mathcal{A}\) von \(\mu_n\) gelten: Für jede \(\mathcal{A}_n\)-gehörige Menge \(A\) setze man \(\mu(A)\) gleich der unteren Schranke aller Summen von numerischen Produkten der \(\mu_n\) längs Überdeckungen von \(A\) durch höchstens abzählbar viele Produkte. Die erforderlichen Verletzungen erfolgen vorteilhaft durch ein von uns schon früher erwähntes und den Integralbegriff vermeidendes Verfahren, das sich hauptsächlich auf einen von uns bewiesenen Satz über \(\sigma\)-Additivität von Inhalten und auf eine leichte Verallgemeinerung der Bedingungen von Andersen und Jensen stützt. Wir fügen ein Beispiel von Maßräumen mit mehreren Produkten und den Beweis der Assoziativität und der Berandungseigenschaft der Maximalmultiplikation hinzu.

H.-W. Burmank (Göttingen): Über die Quotienten fastautomorpher Funktionen.

Die fastautomorphen Funktionen sind, grob gesagt, meromorphe Funktionen in der oberen Halbebene, die sich gegenüber Substitutionen aus der Modulgruppe \(T\) nahezu invariant verhalten. Sie stehen in einem ähnlichen

Der Quotient zweier fastautomorphen Funktionen ist i. a. nicht fastautomorph, und zwar gilt: er ist genau dann fastautomorph, wenn sich seine Polspuren, das sind sämtliche zu seinen Polen äquivalente Punkte, nicht in der oberen Halbebene häufen und eine kleine zusätzliche Bedingung über das Verhalten des Quotienten in \(t_w \) und den rationalen Spiten erfüllt ist. Mit Hilfe der Tatsache, daß eine singularitätenfreie fastautomorphe Funktion konstant ist, läßt sich daraus folgern, daß die Inverse einer fastautomorphen Funktion genau dann wieder fastautomorph ist, wenn sie sich gegenüber einer Untergruppe von endlichem Index in \(\Gamma \) multiplikativ verhält. Schließlich erhält man noch eine Aussage über das Wertverhalten fastautomorpher Funktionen. Die Ergebnisse bleiben gültig für beliebige Gruppen mit kompaktem Fundamentalbereich anstelle der Modulgruppe.

H. O. Cordes (Berkeley): Gelfand’sche Theorie und Pseudodifferentialoperatoren.

In this abstract we wish to discuss the main results we have obtained concerning monogenic functions with values in a Clifford-algebra \(A \). The Clifford-algebra \(A \) is associated with an \(n \)-dimensional vectorspace over \(R \) in which a suitable orthogonal basis \(\{e_1, \ldots, e_n\} \) is chosen; a function \(f: \mathbb{R}^n \to A \) is called monogenic in a certain open neighborhood \(D \subset \mathbb{R}^n \), if

\[
\mathfrak{M} \{ f \} = 0 \text{ in } D, \text{ whereby } \mathfrak{M} = \sum_{a=1}^n \frac{\partial}{\partial x_a}.
\]

First of all we wanted to know whether a function that is monogenic in an open set \(D \) can be developed or not in a series of one or more hypercomplex variables in an open neighborhood of each point belonging to \(D \). We therefore introduced the concept of hypercomplex totally monogenic variables, i. e. variables which are monogenic and for which every power is monogenic. — We then found that a function which is monogenic and analytic in an open set, can be written as a function of \((n-1) \) hypercomplex totally monogenic variables. Furthermore we proved that a monogenic function of the class \(C^1 \) in an open set \(D \), is monogenic and analytic in \(D \), and this in the case that \(V e_a > 0 \). We were able to find that result by using a generalised Cauchy-formula which is derived from Stokes’ formula on a compact differentiable oriented manifold with boundary.

This theory of functions contains as a special case the theory of analytic functions of a complex variable \(z = x + iy \) which is indeed totally monogenic \((n=2)\). Moreover our theory yields results which are analogous with the theory of regular functions of a quaternion variable as it has been developed by R. Fueter in his papers (Comm. Math. Helv. 7, 8). Finally we wish to call attention to the fact that in defining monogenic and analytic functions, we only supposed that at least one of the elements \(e_a \) is different from zero, so that, when considering the special cases locally cited, we obtained results which are sometimes quite different from the usual ones in the theories of functions of a complex or quaternion variable respectively.

Es sei \(R \) ein metrischer Raum mit dem Abstand \(q \). Die Menge der reellen Zahlen und \(F = \{ f(p, t) \} \) die Familie dynamischer Systeme, wo \(p \in R \), \(t \in J \) die Menge der Indizes ist, so daß jedes \(f(p, t) \) übliche Eigenschaften besitzt.

Für einen bestimmten Punkt \(p \in R \) bezeichnen wir die Vereinigung

\[
\bigcup \{ f(p, t) \} \text{ mit } F_p \text{ und nennen sie Familie der Bewegungen } f(a, p) \text{ dynamischer Systeme. Dann bezeichnen wir mit } T_p (p = \text{const.}) \text{ die Menge } \bigcup \{ f(p, t) \} \text{ der Trajektorien } f(a, p) \text{ und nennen diese Menge } \text{ "dynamischer Trichter" der Familie } F_p. \text{ Wenn nebst } p \text{ auch } t \text{ konstant, so heißt die Menge } \bigcup \{ f(a, p) \} = S^P \text{ Durchschnitt des dynamischen Trichters } T_p. \text{ Sodann bezeichnen wir mit } \tau (A, B) \text{ die Entfernung, im Sinne von Hausdorff, zwischen den Mengen } A \text{ und } B. \text{ Man sagt, eine Familie der Bewegungen } F_p \text{ sei rekurrent, wenn sich zu jedem } \varepsilon > 0 \text{ eine Zahl } L(\varepsilon) > 0 \text{ finden läßt, derart, daß für } \text{ jede Zahlenreihe } t_1, t_2, \ldots, t_L \text{ mit } \sum_{i=1}^L t_i \leq \varepsilon \text{ gilt, wo } 0 < t_i < 1. \text{ In der Abhandlung wird zuerst die Äquivalenz zwischen dieser und einer weiteren Definition rekurrer Familien in kompaktem Raum gezeigt. Dann werden einige Sätze bewiesen, die sich auf kommutative Familien beziehen. Eine Familie } F_p \text{ von Bewegungen heißt kommutativ, wenn für je zwei Zahlen } t_1, t_2, \ldots, t_L \text{ die Identität } f(\{f_k(p, t_1), t_1\}) = f(\{f_k(p, t_2), t_2\}) \text{ gilt, wo } f_1, f_2 \text{ beliebige Bewegungen aus } F_p \text{ sind. Schließlich werden noch einige Sätze in bezug auf die definierten Begriffe bewiesen.}

O. Emselien (Greifwald): Über Funktionalgleichungen zwischen Epsteinschen Zetafunktionen gleich Argumenten.

Bei den Epsteinschen Zetafunktionen p-ter Ordnung mit der Kugelform als quadratischer Form gelangt man von der Funktion, deren sämtliche Parameter verschieden durch Multiplikation mit einer Funktion \(G(p, s) \) auf die Funktion, bei der nur die oberen Parameter 0 und die unteren \(\frac{1}{2} \) sind. Für \(p = 1, 2, 4 \) und \(s \) sind diese Funktionen explizit bekannt (z. B. für \(p = 2 \), Math. Annalen 121/1949, 104, Gl. (8)).

Es sind die Funktionen, bei den umgekehrt alle oberen Parameter 1/2, alle unteren 0 sind, gelangt man durch Multiplikation mit der Funktion \(G(p, s) \) für \(s = \frac{1}{2} \), der ist der Faktor \(G(p, 1/2) \) entscheidend. Für \(s = 1/2 \) ist dieser Faktor \(G(p, 1/2) = 2\pi^{1/2} \).
Der Beweis kann mittels der Spiegelungsfunktionalgleichung dieser Zetafunktionen geführt werden, bei der Werte der betreffenden Zetafunktion über das Argument s einerseits und $p-s$ andererseits auftreten, und bei der die oberen und unteren Parameter, eventuell unter Zeichenwechsel, ver- tauscht werden. Man kommt ohne diese Spiegelungsfunktionalgleichungen aus mittels Begründung über Gitterpunktzahlen. Das Resultat ist u. a. eine Funktionalgleichung zwischen 2 Zetafunktionen mit vertauschen unteren und oberen Parametern, jedoch bei gleichem Argument.

Eine ausführliche Darstellung erscheint demnächst in den Mathematischen Nachrichten (Berlin).

F. Erwe (Aschen): Limitierung beschränkter Folgen reeller Zahlen.

Über der mit der üblichen linearen Struktur (über R) versehenen Menge \mathbb{E} aller beschränkten Folgen reeller Zahlen werden positiv-homogene subadditive (reellewertige) Funktionale p betrachtet:

$$p(x + y) \leq p(x) + p(y), \quad p(\lambda x) = \lambda p(x)$$

für alle $x, y \in \mathbb{E}, \lambda \in \mathbb{R}^+$. Jedes derartige Funktional p gibt Anlaß zu einem linearen Limitierungser- fahren in \mathbb{E}. Viele Anwendungen bietet die Menge \mathbb{E}_p derjenigen $x \in \mathbb{E}$, für die $p(-x) = -p(x)$ ist, ein lineares Teilsystem von \mathbb{E}, über dem p linear ist. Wir sprechen von p-Verfahren und nennen $p(x)$ den p-Limes von $x \in \mathbb{E}_p$. Jedes lineare Limitierungsverfahren in \mathbb{E} ist ein solches p-Verfahren. Jeder Endomorphismus A von \mathbb{E} gibt vermittels $p(Ax) = \lim |Ax|$ Anlaß zu einem p-Verfahren; die von Toeplitzmatrizen herrührenden Verfahren gehören hierher.

Sei A ein Endomorphismus von \mathbb{E}. Es gibt positiv-homogene subadditive Funktionale p, für die für alle $x \in \mathbb{E}$ $p(x) \leq \lim x$

(1) $p(Ax) = 0$

erfüllt. Maximal in dieser Art ist

(2) $p(x) = \inf \{ \lambda x + \lambda_2 A x + \ldots + \lambda_k A^k x \}$

wobei das Infimum über alle rationalen λ_i mit $\lambda_0 + \lambda_1 + \ldots + \lambda_k = 1$ erstreckt ist. Andere Darstellungen dieses gleiches Funktional ist ($I = 1$ - Identität):

(3) $p(x) = \lim \lim_{n \to \infty} (A + A^2 + \ldots + A^n) x = \lim \lim_{n \to \infty} (I + A) x$

Im Spezialfall, daß A der Translationsendomorphismus ist, geht (2) auf St. Banach (Banachlimes), (3) auf G. L. Lorentz zurück. Die Ergebnisse können verallgemeinert werden, insbesondere dahingehend, daß (1) für alle Elemente A einer Halbgruppe von vertauschbaren Endomorphismen gefordert wird. In diesem Zusammenhang sind Arbeiten von W. F. Eberlein und R. G. Cooke zu nennen, an die anknüpfen wird.
\[\mu_{n} = \exp(b/n), \quad n = 1, 2, \ldots, \quad \text{folgt.} \] Viele Ergebnisse scheinen nicht wesentlich von der Natur der Maße abhängen und sind direkt auf Banachalgebraen übertragbar. Der folgende Satz ist für kompakte Gruppen bereits bekannt, wurde von L. Schmetterer auf Wahrscheinlichkeitsmaße über beliebigen lokalkompakten Gruppen übertragen und gilt in etwas schwächlicher Form in Banachalgebren mit Involution:

Satz. \(B \) sei eine Banachalgebra mit Einheit \(e \). * bezeichne die Involution. \(a \) sei ein unendlich teilbares Element, d. h. es existieren zu jedem natürlichen \(n \) Elemente \(a_{n} \in B \) mit \((a_{n})^{n} = a_{n} \), die folgenden Bedingungen genügen:

1. \((a_{n})^{n} = a_{n} \) für alle natürlichen \(n \) und \(\xi \), \(\|a_{n}\| \leq 1 \)
2. Es gebe ein \(n_{0} \), sodass \(\|a_{n_{0}} - a_{n_{0}}^{2} - \xi\| < 1 \) ist und
3. Es sei \(\lim \sup \|a_{n} - e\| < 2 \).

Dann gibt es ein \(b \in B \) mit \(a_{n} = \exp(b/n) \) für alle \(n \).

Durch Beispiele läßt sich zeigen, daß dieser Satz insbesondere für Wahrscheinlichkeitsmaße nicht mehr wesentlich verbessert werden kann.

Linear transport processes are defined as a semigroup of bounded linear transformations in a Banach lattice of functions \(f(y) \in H : T(t), \ t \in R^{+} \) or \(t \in I^{+} \) possessing the following properties:

1. If \(f \geq 0 \), then \(T(t)f \geq 0 \).
2. If \(f \geq 0 \) and \(m(E^{+}) > 0 \), \(E^{+} = \{ y : f(y) > 0 \} \), then there exists a \(t_{0} \) not depending of \(f \) such that \(T(t_{0})f > 0 \) for all \(t \geq t_{0} \).

A. The linear Boltzmann operator \(A = \nabla \cdot \sigma(v) \cdot v + \int k(v',v) \cdot dp' \) with \(H = L^{2}(U \times V), \ \tau \in U, \ U \) a convex and open set in \(R^{m} \) and \(v \in v \), \(V = R^{m} \) or \(S_{v} \) with the usual Lebesgue measure in \(U \times V \), is an infinitesimal generator of a semigroup, that is called continuous linear transport process \(T(t) = \exp(At) \).

B. Discrete linear transport processes \((\epsilon f^{+}) \) are a cyclic semigroup of all powers of one \(n \times n \) matrix \(T = (T_{ik}) \) for \(H = R^{m} \). Every Markov process is such one with the additional property \(\sum_{k=1}^{n} T_{ik} = 1 \).

The asymptotic behavior of the orbit \(T(t)g, g \in H \) is studied by use of splitting theorems (Eberlein, Rieß, Jacobs) from ergodic theory. Of special interest for applications are critical linear transport processes where a fixed point \(e \in H \) exists: \(T(t)e = e \).

H. S. Holdgrün (Göttingen): Ein topologischer Vektorraum aus meromorphen Funktionen.

Auf dem Diskontinuitätsbereich zu einer Funktionsgruppe wird ein Vektorraum \(E \) aus gewissen meromorphen Funktionen betrachtet und mit einer Topologie versehen, durch die er ein lokai konvex topologischer Vektorraum wird. Man erhält diese Topologie als induktive Limitetopologie spezieller Frécheträume in \(E \), die sogar Banachräume sind, wenn nur die zur Funktionsgruppe gehörende Riemannsche Fläche kompakt ist. Insbesondere läßt sich durch Zerlegung von \(E \) in eine direkte Summe in diesem letzten Fall nachweisen, daß \(E \) vollständig ist. Die Zerlegung gelingt mit Hilfe von Poincaré-Reihen. \(E \) ist in natürlicher Weise ein Modul für die Funktionsgruppe, und die fastperiodischen Vektor in \(E \) sind gerade die von \(M_{\infty} \) eingeführten fastautormophen Funktionen. Der Hauptsatz aus der Theorie der fastperiodischen Vektor liefert einen Hauptsatz über fastautormorphe Funktionen. Als einfaches Beispiel für \(E \) läßt sich der Raum der rationalen Funktionen auf der Zahlenkugel wählen.

H. Hornich (Wien): Ein Banachraum analytischer Funktionen.

Für ein konvexes Gebiet \(G \) der komplexen Zahlenebene wird die Klasse \(B \) der in \(G \) regulären Funktionen gebildet, deren Ableitung in \(G \) nirgends verschwindet und beschränkte Argumente in \(G \) hat. Mit geeignet definierten Operationen und mit einer Norm, die vom Argument der Ableitung abhängt, ist \(B \) ein Banachraum. In \(E \) ist die Menge \(S \) der auf \(G \) schlichten Funktionen abgeschlossen. Der Anteil der schlichten Funktionen in \(B \) nimmt bei gegebener Norm gegen Null ab, wenn die Norm gegen unendlich strebt.

F. Hackmann (Gießen): Extremale Zerlegungen dreifach zusammenhängender Gebiete.

Es sei \(D \) ein dreifach zusammenhängendes Gebiet in der Ebene mit Randkomponenten \(C_{i}, \ i = 1, 2, 3 \). \(K \) sei die Klasse der Kontinua \(K \subset D \) mit der Eigenschaft: \(D-K \) enthält drei zweifach zusammenhängende Komponenten \(D_{i}(K) \) derart, daß \(C_{i} \) Randkomponente von \(D_{i}(K) \) ist, \(M_{i}(K) \) sei der Ort von \(D_{i}(K) \). Es werden verschiedene Eigenschaften der Menge \(m = \{ M_{i}(K), M_{2}(K), M_{3}(K) : K \in K \} \) untersucht.

H. van Iperen (Delft): Über die Ermittlung gewisser bester Konstanten in der Approximationstheorie.

Unter \(C_{[0,1]} \) verstehen wir — wie üblich — den linearen Raum der auf dem reellen Intervall \([0,1]\) definierten und stetigen, reellwertigen Funktionen, auf dem die Tchebyscheff-Eigenwerte gegeben ist.

\[\|f\| = \max_{x \in [0,1]} |f(x)|, \quad f \in C_{[0,1]} \]

gegeben ist.

Sei \(\lambda_{k} \) eine Reihe von Funktionen in \(C_{[0,1]} \) deren Summe gleich 1 ist, und die außerdem so beschaffen sind, daß jede Linear-Kombination höchstens endlich viele Zeichenwechsel hat. Ist nun \(\langle \lambda_{k} \rangle \) eine der Größe nach geordnete Reihe verschiedener Punkte in \([0,1] \), dann bildet der durch

\[Lf = \sum_{k=0}^{m} \lambda_{k}f(\xi_{k}) \]

für jedes \(f \in C_{[0,1]} \) definierte Operator \(L \) den Raum \(C_{[0,1]} \) in sich ab.
Der Stetigkeitsmodul \(\omega(f; \delta) \) einer Funktion \(f \in C[0,1] \) wird für \(\delta > 0 \) definiert durch
\[
\omega(f; \delta) = \max_{0 < |x-y| \leq \delta} |f(x) - f(y)|.
\]
Für jedes fest gewählte \(\delta > 0 \) gibt es gewiß eine von \(f \) unabhängige Zahl \(K \), derart daß
\[
||f-L|| \leq K \omega(f; \delta) \text{ für jedes } f \in C[0,1].
\]
Zur Ermittlung des Infimums aller solchen Zahlen \(K \) wird ein Verfahren herangezogen, bei dem man lineare Programmierung benutzt. Auch wird folgendes Lemma verwendet: Jede auf einer endlichen Teilmenge des Intervalls \([0,1]\) definierte Funktion \(f \) mit
\[
\max_{1 \leq n \leq 1+1/m \atop n \text{ ganz}} \omega(f; n) = 1
\]
kann erweitert werden zu einer Funktion \(f^* \in C[0,1] \) mit \(\omega(f^*; \delta) = 1 \).

S. Jaenisch (Gießen): Stückweise-lineare Approximation quasikonformer Abbildungen im \(R^n \).

Für Abbildungen eines Gebietes \(G \subseteq R^n \) auf ein Gebiet \(G' \subseteq R^n \) gilt:
(I) Zu jeder stetig-differenzierbaren \(k \)-quasikonformen Abbildung \(f \) gibt es eine derartige Folge abzählbarer lokal-fünfterseitenschnittmer spröder von \(G \) in offene Simplexe, daß durch lineare Interpolation in den Simplexen aus \(f \) Stückweise-lineare \(k \)-quasikonforme Abbildungen mit \(k_0 \rightarrow k \) entstehen, die \(f \) approximieren im Sinne der kompaktenen Topologie. (II) Also ist für \(k < k_0 \) jede stetig-differenzierbare \(k \)-quasikonforme Abbildung approximierbar durch Stückweise-linearer \(k_0 \)-quasikonforme Abbildungen. (III) Wenn (I) ist jede konforme Abbildung approximierbar durch Stückweise-lineare \(k_0 \)-quasikonforme Abbildungen mit \(k_0 \rightarrow k \).

Für einfach-zusammenhängende Gebiete \(G, G' \subseteq R^n \) gilt sogar:
(1) Nach Ablors (mit Beurling) [1964] ist für \(k < \sqrt{3} \) jede \(k \)-konforme Abbildung von \(R^n \) auf \(R^n \) approximierbar durch Stückweise-linearer \(k \)-quasikonformer Abbildungen. (2) Nach Aparad [1966] ist für \(k \geq 2 \leq \ldots \leq k_0 \) jede \(k \)-konforme Abbildung von \(R^n \) auf \(R^n \) durch \(k_0 \)-quasikonforme Abbildungen approximierbar. (3) Wegen des verallgemeinerten Abbildungssatzes ist für \(k > 1 \) jede \(k \)-konforme Abbildung approximierbar durch Stückweise-lineare \(k_0 \)-quasikonforme Abbildungen mit \(k_0 < k \). (4) Wenn (II) und (3) sind für \(k > 1 \) jede \(k \)-konforme Abbildung approximierbar durch Stückweise-lineare \(k_0 \)-quasikonforme Abbildungen mit \(k_0 < k \). (5) Also ist für \(k > 1 \) jede \(k \)-konforme Abbildung approximierbar durch Stückweise-lineare \(k_0 \)-quasikonforme Abbildungen mit \(k_0 < k \).

Ferner gilt für offene Intervalle \(G, G' \subseteq R^n \):
(1) Nach Kelingos [1966] ist jede \(k \)-konforme Abbildung approximierbar durch stetig-differenzierbare \(k \)-quasisymetrische Abbildungen. (2) Wegen (I) und (1) ist jede \(k \)-quasisymmetrische Abbildung approximierbar durch Stückweise-lineare \(k \)-quasisymetrische Abbildungen mit \(k_0 \rightarrow k \).

--- 38 ---

K.-H. Jansen (Aachen): Kriterien für das Fehlen quadratisch integrierbarer Lösungen der Differentialgleichung
\[-\Delta u + q(x)u = \omega \text{ in Außengebieten}. \]

Durch Verallgemeinerung einer Methode von E. Wentholtz gelingt es, elementare Kriterien dafür zu gewinnen, daß eine Lösung \(v(x) \) der Differentialgleichung \(-\Delta u + q(x)v = \omega \) in \(G \) nicht zur Klasse \(L^2(G) \) gehört. Für \(G \) werden dabei die folgenden drei Fälle betrachtet:
1. \(G \) ist der gesamte \(R^n \) (\(n \geq 2 \));
2. \(G \) ist der gesamte \(R^n \) mit Ausnahme des Punktes \(x = 0 \);
3. \(G \) ist ein Gebiet, dessen Komplement sternförmig bezüglich des Nullpunktes ist.

\[f(x, \omega) \] braucht nicht linear in \(\omega \) zu sein. Wir wollen uns auf die Diskussion des Falles beschränken, daß \(f(x, \omega) \) linear in \(\omega \) ist. Dann kann das Problem auch folgendermaßen formuliert werden: Es seien
\[\mathcal{S} = \left\{ \left\{ \mathfrak{a}(x) \right\}_{x \in \mathcal{A}} \right\} \quad \text{und} \quad (u, \omega) = \int_{\mathcal{A}} u \mathfrak{a} \, dx \]
ein komplexer Hilberträum bzw. das in ihm erklärte skalare Produkt. Der Operator \(A \) in \(\mathcal{A} \) mit \(\mathcal{A} \subseteq \mathcal{S} \) und
\[\mathfrak{a} + \Delta \mathfrak{a} + q(x)u = (g(x)) \text{ reell, höheregradig differenzierbar in } G \]
sei symmetrisch. - Es werden nun hinreichende Bedingungen dafür angegeben, daß eine reelle Zahl \(\lambda \) kein Eigenwert von \(A \) in \(\mathcal{A} \) ist. Speziell erhält man hinreichende Kriterien für die Leerheit des Punktspektrums von \(A \) in \(\mathcal{A} \). Das bekannte Kriterium von E. Wentholtz ist als Spezialfall in unseren Ergebnissen enthalten.

H. Kernér (München): Ein Kriterium für die Inäquivalenz exceptioneller Singularitäten.

Es sei \(W \) eine projektiv-algebraische komplexe Mannigfaltigkeit und \(V \) ein schwach negatives Vektorraumbündel über \(W \) mit Faser \(G^n \). H. Grünert hat gezeigt: Identifiziert man alle Punkte der Nullschnittfläche von \(V \) zu einem Punkt \(p \), so entsteht ein komplexer Raum \(X \), der, wenn \(n \geq 2 \) ist, in \(p \) eine Singularität besitzt. Wir bezeichnen dies kurz als exceptionelle Singularität. Ist \(X' \) ein weiterer komplexer Raum, der durch Niederblasen der Nullschnittfläche eines Vektorraumbündels \(V' \) über einer kompakten komplexen Mannigfaltigkeit \(W' \) entsteht, so kann man aus einem Satz von K. Stien über die Fortsetzbarkeit holomorpher Abbildungen folgende Aussage herleiten:

Ist \(n \geq 1 \) und \(\omega \) und gibt es keine biholomorphe Abbildung von \(W \) auf \(W' \), so sind die Singularitäten von \(X \) und \(X' \) biholomorph inäquivalent.

K. Klingerhöfer (Gießen): Nichtlineare harmonische Randwertprobleme.

Ist \(u \) eine im Einheitskreisgebiet \(\{|z| \leq 1\} \) harmonische und in \(\{|z| \leq 1\} \) stetige Funktion, deren Radialsableitung auf \(r = |z| = 1 \) der Bedingung
\[\partial u(\omega)/\partial r = f(s, u(\omega)) \quad (s = e^{i\omega}) \]
mit vorgegebener stetiger Funktion \(f \) genügt, so gilt mit
\[u_{e} = u + m_{e} = u - \frac{1}{2\pi} \int_{0}^{2\pi} f(s, u(\omega)) d\omega \]
mit \(m_{e} \)
\[\partial u_{e}(\omega)/\partial r = f(s, u_{e}(\omega)) - m_{e} \quad (s = e^{i\omega}) \]

--- 39 ---
Es bezeichnet H den Hilbertraum der in $|z|<1$ harmonischen Funktionen v mit $\int v(s)\,ds = 0$ und mit endlichem Dirichletintegral, welches Quadrat der Norm in H ist. Für geeignetes f läßt sich jedes $v \in H$ ein Parameter κ gemäß $f(s)\kappa(s)\,ds = 0$ zuordnen und damit ein Operator T_κ definiert durch $I_\kappa v = \int v(s)\kappa(s)\,ds = 0$. Die Multiplikation mit den Neumann-Funktion und Integration über $|z|=1$ geht dabei mit der geschriebene Randwertaufgabe in eine Operatorgleichung

$$Pe \equiv p - \mathcal{N}e, \mathcal{N} = 0 \quad \left(N; \frac{2\alpha}{3\alpha} \rightarrow p \right)$$

in H (bzw. eine modifizierte Hammerstein'sche Integralgleichung) über.

Das Minimax-Theorem wird durch sukzessives Spezialisieren aus viel umfassenderen Sätzen erbracht, welche sich andererseits auf äußerst einfache Weise aus den Grundthesen der Funktionalanalyse herleiten lassen.

Satz (Korollar zum Satz von Hahn-Banach): Es sei E ein reeller Vektorraum und $0 : E \rightarrow R$ ein sublineares Funktional. Es sei $M \subseteq E$ nichtleer. Dann existiert ein lineares Funktional $q : E \rightarrow R$ mit $q \leq 0$ und mit

$$\text{Inf} \{ q(f) \lvert f \in M \} = \text{Inf} \{ q(f) \lvert f \in E \}.$$

Bemerkung: Es sei $M \subseteq E$ nichtleer und θ-konvex: Zu $u, v \in M$ existiert ein $f \in M$ mit $\theta(f) = (1-\theta)(u+v)$.

Es sei nun X ein kompakter Hausdorffraum. Wir wenden das Vorstehende auf $E = C(X,R)$ und $\delta(f) = \max_{x \in X} f(x)$ für $f \in C(X,R)$ an und erhalten nach dem Satz von P. Riesz das nachstehende Resultat.

Satz: Es sei $M \subseteq C(X,R)$ nichtleer. Zu $u, v \in M$ existiert ein $f \in M$ mit $\delta(f) = \delta(u) \lvert \delta(v)$.

W. Kühnen (Aachen): Störungssätze für die Approximation von Halbgruppenoperatoren.

Es sei $(T; t; A; t > 0)$ eine einparametrische Halbgruppe von linearen beschränkten Operatoren der Klasse C_0 von einem komplexen Banachraum X in sich mit A als erzeugendem Operator. In einer Reihe von Arbeiten (vgl. P. L. Butzer — H. Berens, Semi-groups of Operators and Approximation, Grundlehren 145, 1967) sind die Elemente $x \in X$ charakterisiert, die

$$\| T(t); A; x \| - \epsilon = O(\epsilon) \quad (\epsilon \downarrow 0) \quad (0 < \alpha \leq 1)$$

bzw.

$$\| T(t); A; x \| - \epsilon = o(\epsilon) \quad (\epsilon \downarrow 0)$$

und im Falle gleichmäßig beschränkter Halbgruppen

$$\| T(t); A; x \| - \epsilon < \infty \quad (0 < \alpha < 1; \quad \epsilon < \infty)$$

oder

$$(\alpha = 1; \quad \epsilon < \infty)$$

erfüllen. Unter der t^α-Norm wird hier die L^α-Norm bezüglich des Maßes dt verstanden. Ausgehend von bekannten Störungssätzen wird nun das Approximationsverhalten von

$$T(t; A) + B(t)$$

in $t = 0$ mit dem von $T(t; A)$ in $t = 0$ verglichen, wobei $B(t)$ der Störungsoperator ist. Als Ergebnis ergibt sich mit Hilfe der Theorie der intermedirten Räume im Falle gleichmäßig beschränkter Halbgruppen, daß stets

$$\| (t; A) + B(t) \| - \epsilon \leq \infty \quad \text{genau dann gilt, wenn} \quad \| T(t; A) + B(t) \| - \epsilon \leq \infty$$

ist. Dazu beweist man mit Hilfe der klassischen Funktionalanalyse für die bekannten Störungssätze, daß

$$\| T(t; A) x \| - \epsilon = O(\epsilon) \quad \text{genau dann gilt, wenn} \quad \| T(t; A + B) x \| - \epsilon = O(\epsilon) \quad \text{ist, jedoch im allgemeinen aus}$$

$$\| T(t; A) x \| - \epsilon = o(\epsilon) \quad \text{nicht}$$

folgt. Diese Resultate gestatten zahlreiche Anwendungen auf das Approximationsverhalten der Lösungen von Cauchys Anfangswertproblemen. Die erhaltenen Resultate lassen sich teilweise ausdehnen auf die Lösungen Cauchyscher Anfangsproblem der Form

$$dx(t)/dt = A(t) x(t) + f(t); \quad 0 \leq t \leq t_0; \quad x(0) = x_0 \in X,$$

wobei $A(t)$ für jedes $t \in [0,t_0]$ eine analytische Halbgruppe erzeugt, $B(t)$ eine gewissen Stetigkeitsbedingungen unterworfenen Schar von Operatoren und $f(t)$ eine Funktion mit Werten in X ist.

Das Minimax-Theorem wird durch sukzessives Spezialisieren aus viel umfassenderen Sätzen erbracht, welche sich andererseits auf äußerst einfache Weise aus den Grundthesen der Funktionalanalyse herleiten lassen.

Satz (Korollar zum Satz von Hahn-Banach): Es sei E ein reeller Vektorraum und $0 : E \rightarrow R$ ein sublineares Funktional. Es sei $M \subseteq E$ nichtleer. Dann existiert ein lineares Funktional $q : E \rightarrow R$ mit $q \leq 0$ und mit

$$\text{Inf} \{ q(f) \lvert f \in M \} = \text{Inf} \{ q(f) \lvert f \in E \}.$$

Bemerkung: Es sei $M \subseteq E$ nichtleer und θ-konvex: Zu $u, v \in M$ existiert ein $f \in M$ mit $\theta(f) = (1-\theta)(u+v)$.

Es sei nun X ein kompakter Hausdorffraum. Wir wenden das Vorstehende auf $E = C(X,R)$ und $\delta(f) = \max_{x \in X} f(x)$ für $f \in C(X,R)$ an und erhalten nach dem Satz von P. Riesz das nachstehende Resultat.

Satz: Es sei $M \subseteq C(X,R)$ nichtleer. Zu $u, v \in M$ existiert ein $f \in M$ mit $\delta(f) = \delta(u) \lvert \delta(v)$. Dann existiert ein Baire-Wahrscheinlichkeitsmaß μ auf X mit

$$\text{Inf} \{ \mu(f) \lvert f \in M \} = \text{Inf} \{ \mu(f) \lvert f \in C(X,R) \}.$$

Der Konvexenzparameter ρ einer unendlichen, nicht-negativen, unzerlegbaren Matrix $T = (t^{(i,j)})$, für die alle Potenzen $T^m = (t^{(i,j)}_m)$ existieren, ist der gemeinsame Konvexenzradius der Potenzreihen $T^m(x) = \sum_{m=0}^{\infty} t^{(i,j)}_m x^m$.

$$\left(i, j = 1, 2, 3, \ldots \right).$$

Der Konvexenzradius ρ auf $\lambda = 1/R$ kann dann als Analogon zum dominierenden Eigenwert endlicher, nicht-negativer, unzerlegbarer Matrizen aufgefaßt werden.

Es wird gezeigt, daß unendliche Matrizen A und B, für die ein Kommutator \hat{X} von bestimmter Form existiert, d. h. für die $AX = XB$ gilt, denselben Konvexenzparameter besitzen.

Ferner existiert für eine unendliche Matrix unter gewissen Voraussetzungen ein modifiziertes „charakteristisches Polynom“, dessen Abolutbetrage nach kleinsten Wurzel reell ist und mit dem Konvexenzparameter übereinstimmt.

E. Lammel (München): Über die Koeffizienten in der Reihenentwicklung von $(s-1)^{t}(z)$ nach Potenzen von $s-1$.

Es werden Eigenschaften der Koeffizienten angegeben, aus denen sich insbesondere Abschätzungen herleiten lassen, welche zeigen, daß die Riemannsche Zetafunktion $\zeta(s)$ für $|s-1|<1$ keine Nullstelle besitzt.
K. Lehmann (Berlin): Quadratische Integralgleichungen.

\[P(y; s) = a_0(s) + a_1(s)y + a_2(s)y^2 + \int K(s,t)g(t, s)dt + y(s) \int L(s,t)g(t, s)dt + \int M(s,t)g(t, s)dt + \int N(s,t)g(t, s)dt + \int O(t)g(t, s)dt \]

alle Kerne und Koeffizienten aus dem Hilbert-Raum \(H^2[G] \) ergeben, der sich in einer globalen Satz über die Lösbarkeit einer a. i. G. gewinnt, die die in einer a. i. G. elektrische "funktionalanalytische" von ihrer algebraischen Komponente trennt und der in einer speziellen Fassung wie folgt lautet: Mit den Frobenius-Differentialen \(dp(x, u) = \alpha + 2a_2xu \) und \(dz x = Lu + \mu \) und \(z = 2 \) von \(a^2 + \mu \) und \(\mu = 0 \) mit \(\mu \) mit wiphilarem \(P(s) = e^{P(s)} \) gebildeten Funktionen

\[A_0 = \left(P(x, u) + 2a_2xu \right) \quad B_0 = \left(dP(x, u) + 2a_2u \right) \quad C_0 = \left(dP(x, u) + 2a_2u \right) \quad \Phi \quad \Phi(x, u) \quad \Phi_0(x, u) \quad \Phi_0(x, u) \quad \Phi_0(x, u) \quad \Phi_0(x, u) \]

sowie den "Funktionaloperatoren" \(\Phi_0(x, u) \). Der \(\Phi_0(x, u) \) ist notwendig und hinreichend dafür, daß nach Willkürlicher Wahl von \(x(s) = e^{P(s)} \) Lösung ist von \(P(y; s) = 0 \) oder \(u(s) \) nicht-triviale Lösung ist von \(dP(y; s) = 0 \) ist nicht-triviale Lösung von \(dP(x; u) = 0 \) ist nicht-triviale Lösung von \(dP(x; u) = 0 \). Der \(\Phi_0(x, u) \) ist notwendig und hinreichend für die Behandlung im großen, aber auch für \(dP(x; u) \) abhängig.

P. Lelong (Paris): Fonctions plurisousharmoniques dans les espaces vectoriels complexes et applications aux fonctions analytiques.

Soit \(E \) un espace vectoriel séparé et complet sur \(C \); on définit les fonctions analytiques \(E \rightarrow C \), les fonctions convexes et les fonctions plurisousharmoniques \(E \rightarrow C \). Si \(G \) est un domaine de \(E \), on note les classes correspondantes de fonctions dans \(G \) par \(\gamma(G), \gamma(G), \gamma(G) \) respectivement. Comme dans le cas classique (\(E = \mathbb{R} \)), on a \(\gamma(G) \subset \mathcal{C}(G) \) s'il \(f \in \mathcal{A}(G) \) et on a \(\log |f| \in \mathcal{E}(G) \). Dans le cas où \(E \) est muni d'une involution \(x \mapsto x^* \), on a \(E = E_1 \oplus E_2, x = x_1 + x_2 \) et \(x \mapsto x^* \) est la inversion de symétrie de \(E \). Si \(E \) est un espace vectoriel complexe, alors on a \(\mathcal{E}(G) \subset \mathcal{E}(G) \), où \(\gamma(G) \subset \mathcal{E}(G) \) est le prolongement de \(\gamma(G) \) sur \(\gamma(G) \), où \(\gamma(G) \subset \mathcal{E}(G) \) est le prolongement de \(\gamma(G) \) sur \(\gamma(G) \). Résultat analogue pour \(\gamma(G) = \mathcal{E}(G) \). Soit \(f \) une fonction analytique de \(G \) dans \(E \), et \(f \) une fonction analytique de \(G \) dans \(E \). Si \(\gamma(G) \subset \gamma(G) \), alors on a \(\gamma(G) \subset \gamma(G) \), où \(\gamma(G) \subset \gamma(G) \) est le prolongement de \(\gamma(G) \) sur \(\gamma(G) \). Résultat analogue pour \(\gamma(G) = \gamma(G) \). Soit \(f \) une fonction analytique de \(G \) dans \(E \), et \(f \) une fonction analytique de \(G \) dans \(E \). Si \(\gamma(G) \subset \gamma(G) \), alors on a \(\gamma(G) \subset \gamma(G) \), où \(\gamma(G) \subset \gamma(G) \) est le prolongement de \(\gamma(G) \) sur \(\gamma(G) \).

Application: Soit \(Q \) un domaine de \(G \) et \(\gamma(G) \) considéré comme espace de Fréchet; soit \(\eta \) ensemble des fonctions holomorphes prolongeables hors de \(G \) et \(\eta \) ensemble des fonctions holomorphes prolongeables hors de \(G \).
M. W. Müller (Stuttgart): Über die Ordnung der Approximation
durch die Folge der Operatoren von Meyer-König und Zeller.

Der n-te lineare positiver Operator $M_n (n = 1, 2, \ldots)$ von Meyer-König
und Zeller ordnet bekanntlich einer Funktion $f \in C[0,1]$ formal die n-te
Bernsteinche Potenzreihe

$$
(M_n f)(x) = \sum_{k=0}^{\infty} \frac{k+n}{k} \sum_{k=0}^{\infty} a_{k+1}^{(n)}(x) \quad (0 \leq x < 1)
$$

mit den positiven Gewichten a_k zu. Durch die Festsetzung

$$(M_n f)(1) = f(1) \quad (n = 1, 2, \ldots)$$

läßt sich die Funktion $M_n f$ stetig bis in den
Punkt $x = 1$ hinein fortsetzen. Wir zeigen:

(I) Ist $f \in C[0,1]$ und $\omega(f, \delta)$ der Stetigkeitsmodul von f, so gilt

$$
\| M_n f - f \| \leq \frac{1}{n} \quad (n = 2, 3, \ldots).
$$

(II) Ist $f \in C^2[0,1]$ und $\omega(f, \delta)$ der Stetigkeitsmodul von f, so gilt

$$
\| M_n f - f \| \leq \frac{1}{2 \sqrt{n}} \quad (n = 2, 3, \ldots).
$$

(III) Die in (I) bzw. (II) gegebenen Approximationsordnungen sind best-

möglich. In (I) läßt sich das Infimum aller Konstanten

$$
C > 0 \text{ mit } \| M_n f - f \| \leq C \omega(f, \frac{1}{\sqrt{n-1}}) \quad (n = 2, 3, \ldots, f \in C[0,1])
$$

einschränken durch $1 \leq C \leq 1, (148)$.

Die Ergebnisse (I) und (II) entsprechen inhaltlich den Sätzen von Popoviciu
bezüglich der Bernsteinischen Polynome. Der Beweis beruht auf einer asymptotischen
Abschätzung der Gewichte a_k, die sich wahrscheinlichkeitstheoretisch als ein lokaler zentraler
Grenzwertsatz interpretieren läßt.

G. Neubauer (Heidelberg): Zur Struktur der Automorphismengruppe
einiger Banachräume.

Es ist bekannt, daß die Automorphismengruppen über den Folgenräumen

$\ell_p (1 \leq p < \infty)$ und c_0 zusammenhängend sind.

Andererseits hat A. Donohue gezeigt, daβ dies für $\ell_1 \oplus c_0$ nicht mehr
zutrifft.

Es ist nun möglich, für Folgenräume einige Bedingungen anzugeben, die die
Zusammenhängbarkeit der Automorphismengruppe zur Folge haben.

H.-D. Nies en (Köln): Sätze vom abgeschlossenen Graphen für nicht-

lineare Abbildungen.

Banach's Sätze vom abgeschlossenen Graphen und von der offenen

Abbildung lassen sich in einem Satz über lineare Relationen mit abge-

schlossenem Graphen zusammenfassen. Es wird gezeigt, daß sich dieser

Satz in folgender Form auf nichtlineare Relationen übertragen läßt:
Satz 1. Sei f eine gleichmäßig faststetige Relation eines pseudometrischen Raumes in einen vollständigen pseudometrischen Raum. Dann ist f gleichmäßig stetig, wenn der Graph von f abgeschlossen ist.

Dabei heißt die Relation f des uniformen Raumes E (mit dem Nachbarschaftsfilter \mathcal{U}) in den uniformen Raum F (mit dem Nachbarschaftsfilter \mathcal{V}) gleichmäßig stetig (bzw. faststetig), wenn es zu jedem $V \in \mathcal{V}$ ein $U \in \mathcal{U}$ gibt, so dass für jedes y aus dem Wertebereich von f
\[U(f^{-1}(y)) : = \{ x \in f^{-1}(V(y)) : \text{bzw. } x \in f^{-1}(V(y)) \}. \]

Satz 1 enthält die genannten Banach'schen Sätze, da jede lineare Relation eines vollständigen Raumes in einen lokalkonvexen Raum gleichmäßig faststetig ist.

Nennt man f gleichmäßig offen (bzw. fastoffen), wenn f^{-1} gleichmäßig stetig (bzw. faststetig) ist, so gilt

Satz 2: Jede stetige, gleichmäßig faststetige Abbildung eines vollständigen pseudometrischen Raumes in einen uniformen Hausdorffraum ist gleichmäßig offen.

Für weitere Modifikationen und Verschärfungen von Satz 1 und Satz 2 angegeben. Z. B. erweist sich jede faststetige Relation eines topologischen Raumes in einen lokalkompakten Hausdorffraum als stetig, wenn ihr Graph abgeschlossen ist.

W. Orlicz (Poznań): On orthogonally additive functionals.

Let (E, \mathcal{E}, μ) denote a finite measure space with σ-additive non-negative measure μ on a σ-algebra \mathcal{E} of subsets of an abstract set E. Let us denote by X a linear space of real-valued μ-measurable functions on E, for which $X \subseteq E$, in which a complete \mathcal{P}-norm is defined, and which satisfies the following conditions: $x \in X$ if $y \in X$ and $\| y \| \leq \| x \|$ and $\| x \| = 0$, as $\mu = 0$. A functional $F : X \to R$ is said to be orthogonally additive if $F(x + y) = F(x) + F(y)$ provided that the intersection of supports of x and y is of μ-measure 0. Recently several papers have been appeared which deal with the representation of orthogonally additive functionals in the form

\[F(x) = \int f(x(t), t) \mu (dt) \]

on various function spaces X. In the paper: L. Drewnowsky - W. Orlicz, On orthogonally additive functionals, Bull. Acad. Pol. (1968) we have established two representation theorems of the form (2). These theorems generalize some theorems of Friedman - Katz and Sundaresan.

A. Pietsch (Jena): Ideale von Operatoren in Banachräumen.

Wir bezeichnen mit L die Klasse aller beschränkten linearen Operatoren zwischen beliebigen Banachräumen und mit $L(E,F)$ die Menge der jeweiligen Operatoren aus L, die einen festen Banachraum E in einen festen Banachraum F abbilden. Eine Teilklasse von L sei \hat{L}, wenn für die Mengen $A(E,F) = \bigcap L(E,F)$ die folgenden Bedingungen erfüllt sind:

- Aus $ST \in A(E,F)$ folgt $S + T \in A(E,F), \quad (A)$
- Aus $T \in A(E,F)$ und $S \in A(F,G)$ folgt $ST \in A(E,G), \quad (I_a)$
- Aus $T \in A(E,F)$ und $S \in L(F,G)$ folgt $ST \in L(E,G), \quad (I_b)$

R. Radó (Reading): A set of measure zero containing circumferences of every radius.

This is a report on joint work with A. S. Besicovitch. In the course of solving a problem due to Kaketa, Besicovitch constructed a closed plane set of measure zero which contains corresponding to every direction θ, a straight segment of length unity having that direction θ (Math. Z. 27 (1928)). A set with the properties given in the title can be constructed as follows. According to A with radii r, R is cut into n subannuli A_i of equal width. Every A_i, except the largest, is moved until it coincides in a specified direction θ_i from the centre with the largest A_i. Now every A_i in its new position is treated in the same way with a new direction θ_i, etc. until a set S is obtained which is the union of n annuli of width $n\pi(R-r)$. Clearly, S contains circumferences of every radius between r and R. Also, if n is sufficiently large and the directions $\theta_1, \ldots, \theta_n$ are equally spaced, then S is of arbitrarily small measure. From here some almost standard procedures lead to a set of the required kind. Details will be published in the Journal of the London Mathematical Society.

A. Reich (Göttingen): Elliptische Funktionen längs Geraden.

L. Reich (Bonn): Das Normalformenproblem bei analytischen Differentiagleichungssystemen in der Nähe einer Gleichgewichtslage.

Gegeben sei das analytische Differentiagleichungssystem

\[\frac{dx}{dt} = \sum_{l=1}^{n} w_l x_l + F_k(x_1, \ldots, x_n), \quad k = 1, \ldots, n \]

mit $|w_l| \neq 0$ und in Umgebung von x_0, \ldots, x_n konvergente Polenzreihen F_k, die mit quadratischen Gliedern beginnen. G sei die Gruppe der birationalen Koordinatentransformationen

\[w_k = \frac{v_1}{b_{k1}} + T_k(v_1, \ldots, v_n), \quad k = 1, \ldots, n \]
mit \(|b_0| \neq 0\) und in Umgebung von \(v_1 = \ldots = v_n = 0\) konvergenten Potenzreihen \(T_k\) die mit quadratischen Gliedern beginnen. Es wird die Frage behandelt: Wie lauten die Normalformen der Systeme (1) gegenüber \(T\)? Wir machen folgende Voraussetzung:

(3) Für die Eigenwerte \(\tau_i (0)\) gilt: Es existiert eine Gerade \(g\) durch den Punkt \(r = 0\), so daß alle \(\tau_i\) auf einer Seite von \(g\) liegen.

Ergebnisse:

1. Unter der Voraussetzung (3) werden halbkanonische polynomielle Formen von (1) angegeben, d. h. solche, in denen die \(F_k\) Polynome sind. Ihre Struktur wird beschrieben. Überblick über alle konvergenten Transformationen \(T\) auf halbkanonische Formen.

2. Ein Konvergenzbeweis für \(T\) ergibt sich durch Reduktion des Problems auf das zuerst von E. Peschl betrachtete Normalformproblem für kontrahierende biholomorphe Abbildungen.

Ausblick auf ungeklärte Fragen.

M. Reichert (Frankfurt): Über die Lösungsgeometrie Uryson-Vol terscher Integralgleichungen.

Auf \(C_0[0,1]\) wird der durch \((Ay)(x) = \int_0^1 K(x,y,t)g(t)dt\) für \(y\) aus \(C_0[0,1]\) definierte Volterssche Integraloperator \(A\) betrachtet. Die Kernfunktion \(K\) möge dabei so beschaffen sein, daß \(K(0,1)\) durch \(A\) vollstän dig in sich abgebildet wird. Es wird behauptet, daß die Fixpunkte der Abbildung \(A\) zu Z eine zusammenhängende Menge in \(C_0[0,1]\) bilden. Der Beweis dieser Behauptung wird mit Hilfe der Indextheorien von Leray und Schaud erindirekt geführt: Zunächst läßt sich zeigen, daß sich in \(C_0[0,1]\) disjunkte, kompakte Mengen durch disjunkte, abgeschlossene, kugelhombische geometrischen Teile trennen lassen. Aus der Annahme, die Fixpunktmenge von \(A\) wäre nicht zusammenhängend, folgt, daß für zwei Fixpunkte \(z_1\) und \(z_2\) dieser Abbildung disjunkte, abgeschlossene, kugelhombische Mengen von \(A\) liegen. Die Umgebungen von \(z_1\) und \(z_2\) schließen den Fixpunktmengen von \(A\) z ein, und es läßt sich durch Angabe eines geeigneten Homotopieoperators zeigen, daß der Index dieser Fixpunktmengen auf dem Rand von \(U(z_1)\) bzw. \(U(z_2)\) gleich 1 ist. Damit läßt sich aus der Indexformel sofort ein Widerspruch herleiten.

(1) Ist \(E\) ein komplexer \((B)\)-Raum, \(b\notin E\), \(A\) ein stetiger Endomorphismus von \(E\), und liegt das (komplexe) Spektrum \(\sigma(A)\) von \(A\) im offenen Einheitskreis \(K\), so konvergiert bekanntlich die dem Problem \((f-\lambda)x = b\) zugeordnete Neumannsche Reihe \(\Sigma A^\nu b\) gegen die eindeutig bestimmte Lösung desselben. Im Falle \(\sigma(A)\subset K\) findet dagegen für wenigstens ein \(b\notin E\) Divergenz statt. Man kann zeigen: Ist \(E\) ein komplexer Hilbert-Raum, \(A\) normal, \(R(e) < 1\), \(\sigma(A)\subset K\) und ist \(K_+ := \{x \in E | x \geq 0, A\} < 1\) eine (dann aufweisende) offene Kreisscheibe, welche \(\sigma(A)\) enthält, so ist die für beliebige \(b\notin E\) angesetzte Neumannsche Reihe \(\Sigma A^\nu b\) gegen das (eindeutig bestimmte) \(x\notin E\) mit \((f-\lambda)x = b\) \(E\)-höhenbar.

(2) Satz. Vor.: \(E: T\rightarrow E\) absolut-transitive T-oplitz-Matrix; \(E: || \; || (B)\)-Raum; \(f_E: \rightarrow E\) affin und stetig, d. h. \(f_E(z) = Ax + b, A\) stetiger Endomorphismus von \(E\), \(b\notin E\), mit: \(i) || A|| \leq M \in (M \in E, \nu \in E)\), \(ii)\(Es gibt x_0, \in E\) und eine monotone Teilfolge \((\nu_i)\) von \(\nu\) mit

\[
\lim_{i \rightarrow \infty} (\nu_i)(\nu)x_0 = x \quad \text{im Sinne der schwachen Topologie von } E.
\]

Beh.: a) Es ist \(f(z) = x, \text{ d. h. } (f-\lambda)x = b\). b) Die Neumannsche Reihe \(A\nu x_0\) ist stark \(T\)-höhenbar gegen \(x\).

(3) Die unter (2) formulierte Aussage erlaubt es, für kontrahierende Abbildungen in strikt-konvexen \((B)\)-Räumen Fixpunktsätze konstruktiver Art abzuleiten.

K. Scherer (Aachen): Über die Approximationsätze von Jackson, Bernstein und Zaminsky.

Bezeichnet \(G(f)\) das trigonometrische Polynom \(n\)-ten Grades bester Approximation einer Funktion \(f \in C_0\), so sagen die Sätze von Jackson und Bernstein (und Zygmund) aus, daß \(G(f) - f\) in \((C_0(f))\) existieren, in denen Innern sämtliche Fixpunkte von \(z\) liegen. Die Umgebungen von \(z_1\) und \(z_2\) schließen demnach Fixpunktmengen von \(z\) ein, und es läßt sich durch Angabe eines geeigneten Homotopieoperators zeigen, daß der Index dieser Fixpunktmengen auf dem Rand von \(U(z_1)\) bzw. \(U(z_2)\) gleich 1 ist. Damit läßt sich aus der Indexformel sofort ein Widerspruch herleiten.

Unter Verwendung allgemeinerer Ungleichungen dieses Typs (Peetre 1964)

\(E_0(f) = \inf \{f - p_n \in C_{\infty}(f) | y \in D(p_n) \} < \max_{p_n} f\}

wobei \(X\) ein Banachraum und \(P_0 \subset P \subset \ldots \) Folge von linearen Unterräumen aus \(X\) ist, \(Y\) ein beliebig Banachraum aus \(X\) mit \(U P_0 Y\), kann man diese Sätze in allgemeinerer Form für den Raum \(X\) beweisen, sowie

Ferner werden diese Sätze für Approximationsprozesse auf X, die durch eine Operatorenfolge \((V_n)\) auf X erzeugt werden, unter entsprechenden Ungleichungen vom Jacksonschen und Bernsteinischen Typ bewiesen. Wie Beispiele zeigen, erlaubt man dadurch eine recht weite Klasse von Approximationsprozessen.

L. Schmetterer (Wien) : Über ein Näherungsverfahren.

Krasnosielski hat 1955 ein Näherungsverfahren für die Lösung von Operatorengleichungen in gleichmäßig konvergenten Banach-Räumen gegeben, wobei der Operator kompakt ist und einer Lipschitzbedingung mit Lipschitzkonstanten \(k \geq 1\) genügt. Weitere Resultate hat Schmetterer 1957 hinzugefügt. Es wird dabei nicht verlangt, dass die Lösung eindeutig ist. Fordert man jedoch die Eindeutigkeit, dann lässt sich das Verfahren so modifizieren, dass es für beliebige Banachräume die Lösung liefert.

R. Schnabl (Wien) : Eine Verallgemeinerung der Bernsteinpolynome.

S. Bernstein hat für eine auf dem Einheitsintervall definierte, reelle Funktion eine Folge von Polynomen erklärt, die eine Reihe interessanter Eigenschaften besitzt. Dieser Ansatz wurde in verschiedenen Richtungen verallgemeinert. So wurde von D. D. Stancu für Funktionen auf einem Simplex im \(\mathbb{R}^n\) eine Folge von Polynomen angegeben, die ähnliche Eigenschaften besitzt. Die Punkte des Simplex können vermittels baryzentrischer Koordinaten als die möglichen Verteilungen der Masse 1 auf die \(n+1\) Eckpunkte aufgefasst werden. Analog zu dieser Auf- fassung wird der Raum \(K(\lambda)\) der positiven, normierten Radonmaße auf dem kompakten Raum \(S\) betrachtet und für gewisse Funktionen auf \(K(\lambda)\) Folgen von Bernsteinpolynomen erklärt. Die approximationstheoretischen Eigenschaften dieser verallgemeinerten Bernsteinpolynome sind ähnlich denen der gewöhnlichen Bernsteinpolynome. Ein Differentiationsbegriff für Funktionen auf \(K(\lambda)\) wird in diesem Zusammenhang erklärt.

A. Schneider (Köln) : Weylsche Grenzkreise und -punkte bei reellen S-hermiteschen Differentialgleichungen im Normalfall.

Auf einem beliebigen Intervall \([a,b]\) heißt das System

\[(1) \quad C_1(x)y''(x) + D_1(x)y'(x) = \lambda C_2(x)y(x) + D_2(x)\gamma(x)\]

mit reellen stetigen Koeffizientenmatrizen und stets invertierbarem \(C_2(x) = \lambda C_1(x)\)
ein reelles S-hermitesches System im Normalfall, wenn mit reellen stetigen Matrizen \(C_1(x), D_1(x)\) und einer reellen, stetig differenzierbaren, regulären und schief symmetrischen Matrix \(H(x)\) für alle stetig differenzierbaren \(u, v\,

\[(2) \quad (C_1^{(s)} + D_1(x))^{*} (C_2(x) - \lambda C_1(x))u^{(s)} + (D_1^{(s)} - \lambda D_1(x)) \gamma(x) = d^{n(x)}(H(x)u(x)) dx\]

für alle reellen \(\lambda\) erfüllt ist. Dann ist \(u, u, u\) die Ordnung \(n = 2m\).

\[50\]

\[51\]

Sei E der abgeschlossene Einheitskreis der komplexen Ebene, E^0 sein Innernes, $\zeta \in E^0$, $\zeta \neq 0$; sei $\Phi: E^0 \rightarrow E$ die durch $\Phi(z) = (z - \zeta) / (1 - \overline{\zeta} z)$ definierte (bijektive) Abbildung und Φ_1 deren Umkehrabbildung. Einen Satz von Turin (1958) verschärfend, zeigte J. Clunie (Acta Math. Acad. Sci. Hung. 18, 1967, 165–169) folgenden Satz:

Es gibt eine in E stetige, in E^0 holomorphe Funktion $f: E^0 \rightarrow C$, deren Potenzreihe $\sum a_n z^n$ im Punkt $z = 1$ konvergiert, während die Potenzreihe für $f \cdot \Phi_1$ im $z = 1$ entsprechenden Punkt $\Phi_1(1)$ divergiert.

Der Begriff „Konvergenz“ braucht also bei konformen Abbildungen nicht erhalten zu werden. Unter Verwendung der Hilfssetze von Clunie und des Satzes von Banach-Stechin wird für den genannten Satz von Clunie ein etwas anderer Beweis gegeben, der zu folgender Verscharfung führt:

Sind ζ_1, \ldots, ζ_n abzählbar viele vorgegebene Punkte aus E^0, alle $\neq 0$, so existieren überabzählbar viele Funktionen $f: E^0 \rightarrow C$, die stetig in E und holomorph in E^0 sind, deren Potenzreihen in $z = 1$ divergieren, während die Potenzreihe für $f \cdot \Phi_1$ im Punkt $\Phi_1(1)$ divergiert ($n = 1, 2, \ldots$).

M. Stieglitz (Stuttgart): Über restringierte Limitierung konvergenter Doppelfolgen durch die Kreisverfahren der Limitierungstheorie.

Es werden die Kreis (K-)Verfahren der Limitierungstheorie, das sind das Meyer-König-Vernes-, das Euler-Knopp-, das Valiron-, das Taylor- und das Borel-Verfahren für Doppelfolgen betrachtet. Für die K-Verfahren ist folgender Satz bekannt: Ist die transformierte Doppelfolge $\Sigma_{m=1}^{\infty} a_m$ zu einem Wert s konvergent, so ist die Summe dieser Doppelfolge $\Sigma_{m=1}^{\infty} a_m$ existentiell und schließlich restriktiert beschränkt, so ist sie auch restriktiert konvergent zum Wert s, d. h.

$$\lim_{\delta \leq m < s} s_m = s$$

Im Gegensatz zu diesem Ergebnis wird hier nun nach Bedingungen für die Ausgangsdoppelfolge $(a_{m,n})$ gefragt.

Als Ergebnis wird erster eine Klasse \tilde{B} konvergenter Doppelfolgen $(a_{m,n})$ angegeben, für alle $(a_{m,n})$ aus \tilde{B} der Permanenten für restriktiert K-Limitierbarkeit gilt. Zweitens wird eine \tilde{B} umfassende Klasse \tilde{B}_2 von konvergenten Doppelfolgen $(a_{m,n})$ angegeben, deren K-Transformierte wieder konvergent bleibt, wenn 0 aus δ noch einer zusätzlichen Bedingung genügt. Schließlich wird gezeigt, daß die genannte Bedingung in gewisser Sinne bestmöglich ist.

H. Tietz (Stuttgart): Über Tauber-Bedingungen vom Typ o.

Die (komplexen) Glieder der Folgen (a_n), (b_n), (c_n) $(n = 0, 1, \ldots)$ seien von einer Stelle an ungleich Null; ferner sei

$$\lim_{n \to \infty} a_n = 0$$

und

$$\lim_{n \to \infty} b_n = 0$$

$$(1) \quad \lim_{n \to \infty} b_n = 0$$

$$\lim_{n \to \infty} c_n = 0$$

(2) \quad \frac{a_n}{b_n} = O(1)$$

ist dann V ein permanentes und additives Verfahren zur Summierung unendlicher Reihen, und ist $\Delta_0 a_n = o(1)$ eine Tauber-Bedingung für V, so ist auch

$$\frac{1}{a_n} \sum_{n=0}^{\infty} p_n \cdot a_n = o(1)$$

eine Tauber-Bedingung für V. Die Bedingungen (1) und (2) lassen sich durch

$$\lim_{n \to \infty} \frac{\Delta_0 a_n}{\Delta_0 b_n} = O(1)$$

ersetzen. Ähnliche Sätze gelten für Verfahren zur Summierung unelgenterlicher Integrale.

W. Trebel (Aachen): Charakterisierung von Beziehungen zwischen Fouriertransformierten im \mathbb{E}. Es sei E_0 der n-dimensionale Euklidische Raum, $\mathbb{E} \subseteq \mathbb{E}$ mit $<x,y> = \sum_{i=1}^{n} x_i y_i$ und $|x| = \sqrt{<x,x>}$. Wir betrachten für $a > 0$

$$\lim_{n \to \infty} \frac{\|f\|_{L^p}}{|p|^n} = \frac{\|f\|_{L^p}}{|p|^n}$$

wobei f bzw. g die klassische Fourier- bzw. Fourier-Statistiktransformation der $f \in L^p$, $1 \leq p \leq 2$, bzw. $|x| \in M$ (Menge der beschränkten (Borel)-Maße auf E_0) bezeichnet. Dann heißt sich beweisen:

$$\lim_{n \to \infty} \frac{\|f\|_{L^p}}{|p|^n} = \frac{\|f\|_{L^p}}{|p|^n}$$

wobei c_n eine nur von α, β, γ und δ und konstante $\Delta_0 a_n$ existentiell und schließlich restriktiert beschränkt, so ist sie auch restriktiert konvergent zum Wert s, d. h.

$$\lim_{\delta \leq m < s} s_m = s$$

Im Gegensatz zu diesem Ergebnis wird hier nun nach Bedingungen für die Ausgangsdoppelfolge $(a_{m,n})$ gefragt.

Als Ergebnis wird erster eine Klasse \tilde{B} konvergenter Doppelfolgen $(a_{m,n})$ angegeben, für alle $(a_{m,n})$ aus \tilde{B} der Permanenten für restriktiert K-Limitierbarkeit gilt. Zweitens wird eine \tilde{B} umfassende Klasse \tilde{B}_2 von konvergenten Doppelfolgen $(a_{m,n})$ angegeben, deren K-Transformierte wieder konvergent bleibt, wenn 0 aus δ noch einer zusätzlichen Bedingung genügt. Schließlich wird gezeigt, daß die genannte Bedingung in gewissem Sinn bestmöglich ist.

P. Ucsnay (Bonn): Bemerkungen zu einem Satz über projektive Familien von Mengen.

Es soll am Beispiels eines Satzes gezeigt werden, daß der Begriff „maximal kompakt“, der in der Bewertungstheorie von K häufig benutzt worden ist, auch in der Theorie der projektiven Familien konsistent bleibt. Außerdem soll auf einen Weg hingewiesen werden, wie man Sätze, bei denen die Indexmenge der projektiven Familie gewöhnlich als gerichtet vorausg.
N. Weck (Bonn): Die Außenraumaufgaben in der mathematischen Theorie stationärer Schwingungen elastischer Medien.

Inhomogene, isotrope elastische Medien, die stationäre Schwingungen ausführen, genügen dem System (*):

\[\sum_{j=1}^{m} \left(c_{ij} \frac{\partial u_i}{\partial x_j} \right) + \omega^2 u_i = f_i, \quad i = 1, 2, 3 \]

mit

\[c_{ij}(x) = \lambda(x) \delta_{ij} + \mu(x) \left(\delta_{ik} \delta_{lj} + \delta_{il} \delta_{jk} \right). \]

Für große \(|x|\) seien \(\lambda, \mu\) const. und \(f = 0\). Es wird gezeigt, daß es in einem Außenraum \(S = R^3 - G\) jeweils genau eine schwache Lösung zum System (*) und der Randbedingung \(u_i |_{\partial S} = 0\) bzw. \(u_j \frac{\partial u_i}{\partial x_j} |_{\partial S} = 0\) gibt, die der Ausstrahlungsbedingung genügt.

Beim Eindeutigkeitsbeweis wird an entsprechender Stelle das Prinzip der eindeutigen Fortsetzbarkeit für Lösungen von (*) benützt. Dieses wird mit Hilfe bekannter Integralehängungen für Lösungen elliptischer Differentialgleichungen zweiter Ordnung bewiesen. Ansonsten verläuft der Nachweis der Eindeutigkeit wie in klassem, homogenen Fall.

Der Existenzsatz wird durch eine Kombination von Integralgleichungsmethoden und Hülbertraummethoden hergeleitet. Dabei ist wichtig, daß eine bestimmte Innenraumaufgabe in einem Zwieckengebiet \(Z_g := K(O,R) - G\) keine Eigenlösungen besitzt. Dies wird durch eine geeignete Randbedingung auf \(3K(O,R)\) erreicht.

Der Existenzsatz wird unter den gleichen schwachen Voraussetzungen an \(G\) bewiesen, die auch bei der Behandlung von Innenraumaufgaben mit Hilbertraummethoden gestellt werden müssen.

Ist \((X,O)\) ein (nicht notwendig reduzierter) komplexer Raum mit abzählbarer Topologie, so ist \(O\) eine Garbe von Fréchet-Algebren. Jede Teilmenge \(F\) von \(O(X),\) der globalen holomorphen Funktionen, definiert eine Äquivalenzrelation auf \(X\) und auf dem Quotienten \(X/F\) die sogenannte Spektralstruktur \(S_F: \) Der Halm \(S_F,\) ist die Algebra derjenigen Potenzreihen aus \(C[F(x) - F(y)]\), die in einer Umgebung der Faser von \(F\) über \(y\) konvergieren.

Ist \(F\) eine eigentliche Äquivalenzrelation, so ist \((X/F,S_F)\) ein F-regulärer und F-separabler komplexer Raum. Hieraus folgt eine Charakterisierung komplexer Unterstrukturen auf \((X,O)\):

Eine Garbe \(A\) lokaler Untergruppen von \(O\) definiert genau dann einen komplexen Raum \((X,A)\), wenn gilt: \((a)\) \(A\) ist mit der von \(O\) induzierten Topologie eine Fréchet-Garbe, und \(X\) ist \((b)\) lokal-A-separabel und \((c)\) lokal-A-regulär.

\((a)\) bedeutet, daß \(A(U)\) abgeschlossen in \(O(U)\) ist für offenes \(U\) in \(X,\) \((b)\) und \((c)\) besagen, daß zu jedem Punkt aus \(X\) eine Umgebung \(U\) existiert, so daß die Schnitte aus \(A(U)\) die Punkte trennen und jeden Tangentialraum \(T_P(U,A)\) für \(x\) aus \(U\) erzeugen. \((a),\) \((b)\) und \((c)\) sind unabhängige Bedingungen. Nicht hinreichend wären \((a),\) \((b)\) und \((c)\) mit \((b')\) : \(X\) ist lokal-A-ausbreitbar, d. h. zu jedem Punkt aus \(X\) gibt es eine Umgebung \(U,\) so daß die Fasern von \(A(U)\) aus isolierten Punkten bestehen.

In der genannten Arbeit untersucht Lehto insbesondere auch Picard-Mengen ganzer Funktionen endlicher Ordnung und gibt für derartige Picard-Mengen hinreichende Kriterien an, die verschärft werden. Im Zusammenhang mit dieser Verschärfung ergibt sich auch ein in gewisser Hinsicht interessanter Aspekt, der über die eigentliche Verschärfung hinausgeht.

G. Wittstock (Berlin): Über indefinit symmetrisierbare lineare Abbildungen.

Es seien \(X\) ein linearer Raum über \(C\) und \(Q: X \times X \rightarrow C\) eine indefinite Metrik (d. h. eine nichtausgeartete Hermitesche Bilinearform) auf \(X.\) Unter einer Abbildung \(A: (X,O) \rightarrow (Y,R)\) verstehst man eine lineare Abbildung \(A: X \rightarrow Y,\) zu der es eine adjungierte Abbildung \(A^*: Y \rightarrow X\) so gibt, daß
Q(\varepsilon,A^*y) = R(\varepsilon,y)$ für alle $x \in X, y \in Y$ gilt. Es sei $S(Q)$ die Menge aller Vektorraumtopologien T auf X, für die die Abbildung $Q : (X,T) \times (X,T) \to C$ stetig ist. Wenn $T \in S(Q)$ und $T \in S(R)$ sind, so bedeute $A : (X,Q,T_1) \to (Y,R,T_2)$, daß $A : (X,Q) \to (Y,R)$ und daß die Abbildung $A : (X,T_1) \to (Y,T_2)$ stetig ist.

Wir betrachten nur Räume (X,Q), für die es eine Banachraumtopologie in $S(Q)$ gibt. Für diese Räume gibt es eine Topologie $T_0(Q) \in S(Q)$ mit folgenden Eigenschaften: $T_0(Q)$ ist normierbar und bezüglich der üblichen Ordnung unter Topologien minimal in der Menge $S(Q)$. Wenn $A : (X,Q) \to (Y,R)$ ist, dann gilt $A : (X,Q,T_0(Q)) \to (Y,R,T_0(R))$. Wenn Q definiert ist, dann wird $T_0(Q)$ von der Norm $\|z\|_Q = \sqrt{Q(z,z)}$ zur ε-Entfernung eingeführt. Es werden weitere Eigenschaften der Topologie $T_0(Q)$ untersucht.

Es sei $z(\cdot)$ eine in $K_B = \{z \mid z < R\}$ $(0 < R \leq + \infty)$ meromorphe Funktion der komplexen Veränderlichen z mit Werten in einer kommutativen Banach-Algebra B. Es wird gezeigt, wie die beiden Hauptsätze der Wertverteilungstheorie der komplexfachen meromorphen Funktionen für derartige vektorwertige Funktionen übertragen werden können. Die angewandte Methode besteht in der Integration der Nevanlinna-Maschen Ungleichungen über den lokalkompakten Hausdorffschen Raum \mathbb{M} der maximalen Ideale von B.

Es wird die funktionalanalytische Struktur eines Banachraumes analytischer Funktionen beleuchtet, der von H. Hornich im Zusammenhang mit den schlichten Funktionen betrachtet wurde.

SEKTION III:

Geometric und Topologie

M. Aigner (Detroit): Graphs without partial orderings.

An undirected graph is said to permit a partial ordering if its edges can be oriented in such a way that the resulting directed graph represents a partial ordering of the vertex set. In 1962 Gilbert and Hoffman succeeded in characterizing such graphs by means of certain subgraphs which they do not contain. In this paper graphs without partial orderings are analyzed. Theorems are derived concerning minimal configurations, the complementary graph, the linegraph, etc. Further, another Kuratowski-type characterization and connections to the theory of matchings are demonstrated.

O. Baier (München): Über die Trochoidenhüllkurven der Dreh- und Kreisrollenmaschinen, speziell des NSU-Wankel-Motors.

S. Bilinski (Zagreb): Eine Anwendung der ptolemäischen Matrizen.

Eine schiefsymmetrische Matrix vom Rang 2 soll eine „Ptolemäische Matrix“ heißen. Auf dem Begriff solcher Matrizen kann ein analytisches Modell des projektiven Liniensystems gegeben werden. Dazu werden zwei Grundbegriffe der Linienebene analytisch erklärt: Eine Gerade ist eine Ptolemäische Matrix $g(n + 1)$-ter Ordnung. Zwei Geraden g_1 und g_2 schneiden sich dann und nur dann, wenn auch $g_1 + g_2$ eine Ptolemäische Matrix ist. Auch andere Begriffe der Liniengruppe werden dann analytisch gedeutet, und es wird gezeigt, daß damit wirklich ein Modell des n-dimensionalen projektiven Raumes gegeben ist. Die entwickelte Methode zeigt sich aber auch gut anwendbar für allgemeine Untersuchungen in der Liniengeometrie.

G. Blind (Stuttgart): Ein Unterdeckungsproblem.

Gesucht ist die dichteste Unterdeckung der euklidische Ebene mit konvexen Kreisbeziehungen K, derart, daß jeder Kreis K durch eine Bewegung beliebig weit vor seiner Ausgangslage entfernt werden kann. Dabei soll die Bewegung so vor sich gehen, daß die bewegte Scheibe in keiner Lage einen gemeinsamen inneren Punkt mit einer anderen Scheibe hat.

Der Vortrag beschäftigt sich mit der Lösung dieses Problems. Folgendes Ergebnis wird bewiesen: Für die Unterdeckungsdichten D aller Kreisbeziehungen, welche die genannte Bedingung erfüllen, gilt die Abschätzung $D \leq \frac{\pi}{\sqrt{3} + \sqrt{15}} = 0,56049 \ldots$

Ein Beispiel mit $D = \frac{\pi}{\sqrt{3} + \sqrt{15}}$ zeigt, daß diese Abschätzung nicht verbessert werden kann.

B. Bollow (Darmstadt): Metrisch-euklidische und pseudoeuklidische Gruppenebenen.

Nach der bisher unbewiesenen Ringvermutation sind alle Pseudoringe Ringe, d. h. homomorph zu Sn X Q [0,1]. Wir verweisen auf die ausführliche Behandlung dieser Frage in [1]. Wir zeigen hier u. a., daß A (Sn, Q) ein Ring ist, wenn Sn für l = 1,2 eine gute verblichbare (n—1)-Vollkugel B1 enthält.

Das in [2] angegebene hinreichende Kriterium (Lipschitz-Einbettung) ist eine einfache Folge dieses Satzes [s. [2]]. Falls die Ringvermutation richtig ist, erfüllt jeder Pseudoring die Voraussetzung unseres Satzes; im andern Fall gibt es Ringe, die die Voraussetzung nicht erfüllen.

V. van Bouchout (Löwen): Drehungen in Strahlenkongruenzen.

Falls eine beliebige Strahlenkongruenz gegeben ist, ist es immer möglich, hieraus eine Normalkongruenz zu bilden, indem jeder einzelne Strahl um eine entsprechende parallele Achse um 90° gedreht wird. Die Differentialgleichungen, die die Drehachsenkongruenz bestimmen, haben ganz einfache Lösungen.

E. M. Bruins (Amsterdam): Komplexsymbolik, Linz 1908 und Quantenmechanik.

G. Burda (Frankfurt): Duality in Groups Neurithische Knoten.

Der Außenraum C eines Neurithischen Knotens vom Geschlecht g ist ein Faserraum über der

\[A = A_1 = \{ 0 \} \]

\[A = A_2 = \{ 0 \} \]

woraus die bekannte Symmetrie der Alexandermatrix \(F = A_1 = \{ 0 \} \) und des Alexanderpolynoms \(| A_1 = \{ 0 \} \) folgt. In der universellen Überlage rung \(F = A_1 = \{ 0 \} \) induziert einen Automorphismus \(\alpha \) der Gruppe \(\mathbb{Z} \times \mathbb{Z} \) bezeichnet werden können. Ein Automorphismus von \(\mathbb{Z} \times \mathbb{Z} \) beschrieben wird.

\[(1) \]

\[A = A_1 = \{ 0 \} \]

\[A = A_2 = \{ 0 \} \]
L. R. A. Cassé (London) : A solution to R. Segre's Problem 1.r.q.

A finite linear space of dimension r over a Galois field GF(q) is denoted by Sa, r.

Definition: A k-arc K of an Sa, r is a set of k points of the Sa, r, no r + 1 of which are linearly dependent, k ≥ r + 1.

Problem 1,r,q : For given r and q, what is the maximum value of k, denoted by [r, q], for which k-arcs exist in Sa, r? And what, precisely, are the k-arcs corresponding to such a value of k?

B. Segre has produced the following answers:

(i) The case q odd: (a) If r = 2,3,4 then [r, q] = q + 1. (b) If r > 4, then [r, q] = q + r - 3. (c) In S2,q, every (q + 1)-arc is a conic. (d) In S3,q, every (q + 1)-arc is a twisted cubic.

(ii) The case q even: (a) If r = 2, then [r, q] = q + 2. (b) If r > 2, then [r, q] = q + r.

We define a tangent line t at a point P of a k-arc K of an Sa, r as a unisecant line through P such that t contains at least one further point in common with K. We prove, under the hypothesis that q is even, that in S2,q there is a unique tangent line t to a (q + 1)-arc of an Sa, q, while in S3,q there are two hyperbolic quadrics.

Y. Chen (Bochum) : Eine Kennzeichnung der pseudoeuklidischen Kreisgeometrie.

L. Döckal (Zagreb) : Die Striktionslinienfläche eines Bücksehls von Regelflächen zweiter Grade.

Jede Regelfläche zweiten Grades H enthält zwei Striktionslinien s, die, wie bekannt, vierter Ordnung zweiter Art sind. Diese zwei Kurven sind zum Flächenmittelpunkt symmetrisch und die Verbindungsgeraden so zugeordnet, dass die Punktmenge bilden einen rationalen Regel vierter Ordnung K, dessen Doppelzerlegungen die Flächenachsen sind. Die Erzeugenden dieses Kegels K sind die zu den zugeordneten Striktionslinien konjugierten Durchmesser der Fläche H.

In einem Regelflächenbüchse (H) ist jeder Flächen H je ein Kegel K eindeutig zugeordnet. Diese Kegel K bilden ein System und es wird bewiesen, dass jede Raumpunkte der zugeordneten Flächen eines Büchels (H) bilden eine Fläche s, die von der vierzehnten Ordnung ist. Da zu jeder Punkte einer Geraden eine Fläche H und fünf Kegel K enthält, wird durch die lineare Striktionslinienfläche die Fläche der vierzehnten Ordnung. Die Grundfläche des Regelflächenbüchels (H) ist einflächenflächen und die Scheitel ist Doppelflächenfläche dieser S.
Unter Berücksichtigung von Untersuchungen von E. Müller, W. Kauth und W. Wunderlich werden zwei spezielle Punktverwandtschaften betrachtet und allgemein formuliert.
1. Die im R_n definierte "axiale Inversion" wird zu einer R_{n+1}-Punktverwandtschaft von einem $(n-2)$-dimensionalen linearen Zentralraum aus verallgemeinert. Es wird auf mehrere Möglichkeiten der Definition dieser Transformation, Inversion T_{ax}, genannt, hingewiesen.
2. Der "lineare harmonische Umschwing", der sich aus einer harmonischen (i. a. gedämpften) Schwingung auf zueinander parallelen Geraden beliebiger Richtung und einer Rotation dieser Geraden um einen linearen Umschwing auf konvexen Zylinderflächen als Sonderfall.
Die analytische Darstellung im R_n ergibt sich aus einer konstruktiven Behandlung im R_{n+1} unter Verwendung eines speziellen Zwei bildersystems nach H. Dallmann. Klassifizierende und gemeinsame Geschichtspunkte sowie Eigenschaften der Punktverwandtschaften werden angegeben.

G. Fischer (München): Steinsche holomorphe Faserbündel.
Es bezeichnen B, X und Y reduzierte komplexe Räume, G eine komplexe Liesgruppe.

Setz 1. Sei $\pi: B \to X$ ein holomorphes Faserbündel mit Faser Y und Strukturfaser G. Für eine π-Vereinigungskomponente Y' von Y sei $G' = \pi|_{Y'}$. Dann gilt: Sind X und Y Stein und hat G' endlich $|G| = G': g \in G'$.

Setz 2. Sei $\pi: B \to X$ eine lokaltriviale holomorphe Faserung mit Faser Y.
Ist X Stein und Y Hilberts, so ist B Stein.

Diese Geometrien können auch dadurch gekennzeichnet werden, daß die Sehnen konzentrischer Kreisekegel sich in einem Punkt schneiden. Der Anschluß an diese zweite Definition wird eine anschauliche Übersicht für verschiedene Fälle geben, wo für das Krümmungsmäß gilt: $G > 0$, $G < 0$, $G = 0$ und je nachdem, ob das starke oder das schwache Monotonieaxiom gefordert wird ($AB = BA$, $AB \neq BA$). Kennzeichnung der Monotonieaxiom-gerechten Graphen werden mit geradlinigen Extremale, bei denen die Aquidistanten zu Geraden wieder Gerade sind.

Geometrische Deutung des Legendresehen Kriteriums. Kürzeste Verbindung zweier Punkte A, B im Falle, wo die Gerade AB eine schwache Extremale ist. Über die Horizonte im Falle $K = 0$.

Nach Rogers und Shephard kann man die Simplexe des n-dimensionalen euklidischen Raums R^n durch folgende Eigenschaften kennzeichnen: Ist C die Klasse der konvexen Körper des R^n mit inneren Punkten, so ist $K \in C$ genau dann ein Simplex, wenn es zu jedem $x \in R^n$, für das $K \cap (K + x) \in C$ ist, eine reelle Zahl $0 < y < 1$ gibt mit $K \cap (K + x) = yK + C$. Dieser Satz legt einige Verallgemeinerungen nahe. Es zeigt sich, daß man die Simplexe durch die obige Eigenschaft innerhalb der Klasse der kompakten Teilmenge des R^n mit inneren Punkten charakterisieren kann und bei der Veranschaulichung von Randpunkten in noch weiteren Klassen. Weiters ist es möglich, eine Folge $x_n \to y_n$ von Punkten aus R^n anzugeben, so daß $K \in C$ genaugenommen ein Simplex ist, wenn für alle hinreichend großen n Zahlen $n > 0$ und Punkte $y_n \in R^n$ vorhanden sind, für welche $K \cap (K + y_n) = y_nK + C$. Dies ergibt man K fest, so kann man genauere Aussagen machen.

R. Schneider hat die Frage angeschrieben, welche Körper $K \in C$ durch andere Relationen zwischen $K \cap (K + x)$ und K ausgewiesen werden. In diesem Zusammenhang gilt: $K \in C$ genau dann eine direkte lineare Summe von Simplexen, wenn es zu jedem $x \in R^n$ mit $K \cap (K + x) = C$. Eine affine Transformation f mit $K \cap (K + x) = fK + C$.

R. Halin (Köln): Minimale n-fach zusammenhängende Graphen.
Es wird die Struktur solcher n-fach zusammenhängender Graphen untersucht, die nach Streichung einer beliebigen Kante stets ($n-1$)-trennbar werden. Unter anderem wird gezeigt, daß ein solcher Graph beliebig viele Ecken n-ten Grades enthalten muß, wenn n oder der Maximalgrad der Ecken des Graphen hinreichend groß ist. Es gibt n Lösungen, die alle Flächen, die für $n > 3$ ergeben sind, einige Verschärfungen der Theorie der n-fach zusammenhängenden Graphen von Tutte.

E. Harzheim (Köln): Ein Satz über endlich färbbare Graphen.
Es sei G eine Menge mit einer symmetrischen Relation R, und der Graph (G,R) sei mit einer nat. Zahl n Farben färbar. Die Eckenmenge G sei wohlgeordnet, der Einfachheit halber könnten wir annehmen, daß G ein Abchnitt der Ordinalzahlreihe ist: $G = \{\xi \mid 1 < \lambda\}$. Jeder zulässigen Färbung von
(G,R) mit n Farben (e 0,1,...,n−1) entspricht also eine Belegung von G mit Ziffern 0,1,...,n−1, also ein Element aus n(G) (= Menge aller Folgen der Länge n von Ordinalzahlen ≤ n). Da n(G) bezüglich der lexicographischen Ordnung nach ersten Differenzen mit einer Totalordnung ist, ist eine natürliche Totalordnung <. Es folgt dann, daß F ohne Lücken ist und daß F eine natürliche Ordnung mit einer endlichen hyperbolischen Ebene über Körpern der Charakteristik 2 möglich sind. Für Dimension 3 läßt der von Ahrens (1959) definierte metrische (absolute) Raum, der auf Bachmann aufbaut, keine endlichen Modelle zu (ebenso bei Nolte, 1965).

Deshalb soll ein verallgemeinerter absoluter Raum mit Hilfe eines Axiomsystems für die Bewegungsgruppe definiert werden, der auch endliche Modelle zuläßt. Es ergibt sich dabei, daß über jeden Körper, der nicht Charakteristik 2 besitzt und mehr als 3 Elemente hat, Modelle eines solchen verallgemeinerten Raumes möglich sind. Es ist vorgesehen, diesen Begriff auf beliebige Dimension auszudehnen. Wünschenswert wäre ferner die Einbeziehung der Charakteristik 2.

H. Izbički (Wien): Über die Existenz asymmetrischer regulärer Graphen.

Es werden zusammenhängende, einfache (= spezielle, schlichte), unge richtete, asymmetrische (d. h. mit trivialer Automorphismengruppe behauptete) reguläre Graphen betrachtet. G. Barou et W. Imrich haben in [1] Existenzsätze für solche Graphen gegeben. Es wird nun gezeigt:

(1) eine Methode zur Bestimmung der Automorphismengruppe eines vorgegebenen Graphen entwickelt, die sich in vielen Fällen gut verwenden läßt, und

(2) eine Verschärfung der Ergebnisse von [1] angegeben.

Das Resultat läßt sich in folgenden Satz zusammenfassen: Für die in der Spalte NE der folgenden Tabelle angegebenen Werte n gibt es keinen zu-

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
k. Hingegen gibt es für die in der Spalte E angegebenen Werte n solche Graphen. Für ungerade Werte k sind allerdings nur gerade Werte n in der Spalte E zulässig, da es in diesen Fällen überhaupt keinen regulären Graphen mit ungerader Knotenzahl gibt. In der letzten Spalte sind die noch ungeklärten Fälle aufgeführt:

<table>
<thead>
<tr>
<th>Grad k</th>
<th>NE</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>n≤11</td>
<td>12≤n</td>
</tr>
<tr>
<td>4</td>
<td>n≤5</td>
<td>10≤n</td>
</tr>
<tr>
<td>5</td>
<td>n≤9</td>
<td>10≤n</td>
</tr>
</tbody>
</table>
| 7≤k≤13, unger. | k≤n+5, 2k+10≤n | k+7≤n+2k+8, n ger.
| k≥15, unger. | k≤n+5, 2k+10≤n | k+4≤n+2k+6, 2k+10≤n |
| 8 | n≤11 | 12≤n≤14, 24≤n |
| 10 | n≤13 | 14≤n≤16, 28≤n |
| 12 | n≤15 | 16≤n≤18, 32≤n |
| k≥14, gerade | k≤n+3 | k+4≤n≤2k+7, 2k+8≤n |

K. Jänich - E. Ossa (Bonn): Über die Signatur einer Involution.

Alle unsere Mannigfaltigkeiten seien kompakt und differenzierbar, und wir betrachten nur differenzierbare Abbildungen. Sei T eine Involution auf M, dann ist eine symmetrische Bilinieare Form \(H_0(M,R) \times H_2(M,R) \to R \) durch \(\langle x,y \rangle = x^T g y \) gegeben. Die Signatur \(\text{Differenz der Anzahlen der positiven und der negativen Eigenwerte} \) dieser Form bezeichnet man mit \(\text{sign}(M,T) \). Ist dim \(M = 0 \), so setzt man \(\text{sign}(M,T) = 0 \). Man nennt \(\text{sign}(M,T) \) die Signatur der Involution

\[
\text{sign}(M,T) = \text{tr}(F) - \text{tr}(T)
\]

wobei \(\text{tr}(F) \) und \(\text{tr}(T) \) der "Selbstkern" der Fixpunktmenge ist (siehe [4]).

Man kann (1) beweisen, indem man \(\text{sign}(M,T) \) als Index eines gewissen elliptischen Differentialoperators interpretiert und dann den Atiyah-Bott-Singerischen Fixpunktsatz anwendet [1]. In [6] geben wir einen elementaren Beweis von (1) und darüber berichtet der Vortrag. Unsere (ebenso elementar beweisbaren) Hilfsmittel dabei sind:

(A): Additivitätseigenschaft der Signatur nach S. P. Novikov [vgl. [1], [4], [5]].
(B): Summe der Signatur ist die Summe der Signatur der beiden Symplektischen Strukturen, die eine MANNIGFALTIGKEIT Gibt
(C): \(\text{Chern-Hirzebruch-Serre-Theorem}, [2] \), wonach \(\text{tr}(F) = \text{tr}(F) \).

Literatur:

B. Kusić (Zagreb): Dr. Cegelskin nichtegrundtheorie und einige Modelle der Geometrie der hyperbolischen Ebene.

Es wird die ebene (\(FGH^+ \))-Figur untersucht, die aus dem Kegelschnittnetz (\(FGH \)) und einer Grundgerade \(g \) zusammengesetzt ist. Es wird die Interpretation der Grundbegriffe der Geometrie der hyperbolischen Ebene in die (\(FGH^+ \))-Figur eingegeben. Es wird das (\(FGH^+ \))-Modell der Geometrie der hyperbolischen Ebene aufgebaut. Es werden die Die Verbindung mit der \(\Pi \)-Interpretation von Bilinski und das Lobitzheische Parallelaxiom in dem (\(FGH^+ \))-Modell betrachtet, wie auch die speziellen Fälle des (\(FGH^+ \))-Modells, innerhalb dessen sich auch das bekannte Modell von Garmath unterscheidet.

P. Kurić (Zagreb): Die Anwendung der isolierten Nabelpunkte bei der konstruktiven Behandlung der Regelflächen dritten und vierten Grades.

Wenn es auf einer Regelfläche dritten oder vierten Grades Paare von Minimalerzeugenden gibt, so gehören ihre Schnittpunkte dem isolierten Teil der Doppellinie an; man nennt sie die isolierten Nabelpunkte der Fläche. Die Tatsache, daß die ebene Schnitte der Fläche sich aus einem isolierten Nabelpunkt auf eine Ebene, die zu dem Minimalerzeugendenpaar dieses Punktes parallel ist, als zirkulare Kurven projiziert, ermöglicht einfache Lösungen für viele graphische Konstruktionaufgaben für solche Flächen. Dies wird an Hand einiger konkreter Aufgaben auseinandergesetzt, z. B. für den Schnitt einer Regelfläche dritten oder vierten Grades mit einer Geraden, für die Bestimmung der Berührungspunkte von Tangentialebenen u. v. a.

A. Mallios (Athen): On topological tensor algebras.

By a topological tensor algebra is meant a topological algebra, expressed as a tensor product (finite or infinite), suitably topologized, of topological algebras. In this respect, an item of a particular interest is the Gel’fand space (spectrum) of the tensor algebra, represented in terms of the respective spaces of the factor algebras (cf. this author, Math. Ann. 154/1964, 171–180 and 170/1967, 214–220). One has, for certain particular cases, a similar representation concerning the same set endowed with the Stone-Weierstrass topology (K. B. Laursen, to appear). Now, the situation regarding the first case is summarized into the following result.

Theorem: Let \(E,F,G \) be locally convex topological algebras with continuous multiplication and identity elements, and let \(G \) be complete. Moreover, suppose that \(\text{Hom}(E,G) \subseteq L_1(E,G) \) and \(\text{Hom}(F,G) \subseteq L_2(F,G) \) are locally equiconnued subsets of the spaces indicated and let \((E,F,G) \) be an "admissible topology" on \(E \otimes F \). Then, there exists a biconvex injection of \(\text{Hom}(E \otimes F,G) \) into \(\text{Hom}(E,G) \times \text{Hom}(F,G) \), with respect to the weak to-
H. Mascart (Toulouse): Limites de foncteurs en théorie des modules topologiques.

La notion de limite d’un foncteur conduit, pour les modules topologiques, à des résultats généraux. Ceux-ci admettent pour conséquences diverses propriétés déjà connues des espaces vectoriels topologiques localement convexes et concernant les limites inductives et les limites projectives, les topologiques initiales et les topologies finales, l’inclusion dense et la réunion topologique. Dans certains cas, des foncteurs adjoints convaincument choisis permettent d’établir, par dualité, des relations entre ces différentes notions.

V sei ein n-dimensionaler halbeinfacher Vektorraum über einem kommutativen Körper mit Kardinalität o(K) > 2, q sei eine quadratische Form, für die die symmetrischen Bilinearform f_q durch q(a + b) = q(a) + q(b) + f_q(a, b) verbunden ist. Man ordnet V den symmetrischen Basisketten P = (α_j), projektiven Raum V' = V/O(K)/O(q) zu und definiert Klassen von projektiven Punkten α_j, die zu nicht-singulären Vektoren α_j gehören. Die Menge B aller Ketten bildet eine Semigruppe mit Einselement O(K)(α_j) für q gegebene orthogonale Gruppe. p: B → O(K)(α_j) sei die in V q gegebene orthogonale Projektion, die zu projektiven Räumen, die gegebenen Spiegelungen längs a_j. Die Umformungen (a_j, a'_j) → (α_j) und (a'_j, b_j, γ_j) → (b_j), wenn a_j = b_j, Spiegelungssatz von Bachmann, ergeben in B eine Äquivalenzrelation. Für die Äquivalenzklassen, die eine Gruppe π, bilden, wurde in [1] für den Fall char K ≠ 2 und für jede Körperkardinalität und in [2] für o(K) ≥ 4n in dem Fall char K = 2 der Satz bewiesen: B = π/ker π. D. h. Alle Relationen in O(K)(α_j) werden von Relationen der Länge 2 oder 3 (Dreispiegelungssatz) erzeugt. Der Satz wird jetzt unabhängig von der Charakteristik für o(K) > 2 bewiesen. Literatur:

In der ebenuidlichen Kinematik wird mittels einer verallgemeiner-

nen Gleitzahl das Bewegungserhalten eines Geschwindigkeitspol-
kurvenpaars festgelegt. Hieran anschließend lassen sich gewisse Polkomfi-
gurationen in Verbindung mit der Euler-Savaryschen Formel auszeichnen.

In einigen Fällen kann man auf Grund einer Eigenschaft der Polbahnen Schlüsse hinsichtlich Existenz und Eindeutigkeit der zugehörigen Bewegung ziehen.

J. Missfeld (Hamburg): Eine topologische Kennzeichnung der projektiven Räume über den reellen Zahlen.

Es ist dann noch weiteren topologischen Eigenschaften des projektiven Raumes zu suchen, so daß als Koordinatenbereich nur der Körper der reellen Zahlen in Frage kommt. Beim Untersuchung spezifischer Eigen-

schaften reeller projektiver Räume findet man, daß solche Räume eine Topologie besitzen, die die sie zusammenhängende und die sie nicht zusammenhängende. Eine weitere we-

tellige Eigenschaft reeller projektiver Räume ist die Tatsache, daß ihre Topologie mit der der Anordnungstruktur der reellen projektiven Räume abgeleiteten Ordnungstopologie übereinstimmt. Es taucht hiermit das Problem auf, diese letzte Eigenschaft rein topologisch zu formulieren. Als Er-

gebnis erhält man, daß die projektiven Räume über dem Körper der reellen Zahlen unter den daraus generierten topologischen Räumen dadurch gekennzeichnet sind, daß sie zusammenhängend und nach Heraus-

nahme zweier Hyperebenen zusammenhängend sind.

V. Murgescu (Jassy): Espaces de Weyl généralisés.

Soit X_n eine variété différentiable douée d'objets géométriques suivants: a) un champ tensoriel g_{ij} asymétrique et de classe C^r, dont la partie symé-

trique g_{ij} est le rang n, b) un champ vécorial r_{ij} de C^r connexion affine, L_i, qui vérifient les relations g_{ij} = g_{ji}, g_{ij} = L_i, où g_{ij} est la dérivée covariante de g_{ij} par rapport aux coefficients L_i. C'est la définition d'un espace de Weyl généralisé (espace à tenseur asymétrique récurrent), pour lequel r_{ij} est le vecteur de récurrence.

En utilisant deux théorèmes de J. H. Vanstone au regard le tenseur b^i_j =

\frac{1}{2} [g_{ij} + g_{ji}], où \phi_{ij} = (1/2) (g_{ij} - g_{ji}), et \phi_{ij} = L_i, (symboles de Kronecker), qui furent publiés dans le Canad. J. Math., 16 (1964), on aboutit aux résultats suivants:

Théorème 1. La condition nécessaire et suffisante pour qu'il existe une connection L_i, de classe C^r, ainsi que le tenseur g_{ij} soit récurrent, est que la form normal (Jordan) de B = [b^i_j] soit constante.
Die normale Ebene E bei der Konvexität K ist nach Theorem 2 durch die Gleichung $g_{ij} = T_{ij} - T_i T_j$ gegeben, wo T_i die Tangentienrichtungen der Fläche K ist.

Für die normale Ebene E gilt $g_{ij} = 0$ und $T_i = 0$.

Theorem 3: Sei B die normale Ebene (Jordan) und g_{ij} die Matrix, dann ist g_{ij} definit positiv. Die Matrix B ist also die Lösung des Problems.

Im gewöhnlichen Raum sei C eine durch die Fläche x gesuchte Kurve mit positiver Krümmung 1/2. In der Normalform jedes Punktes P von C in welcher u konstant ist, der eine Ebene x durch C hindurchgeht und in Richtung der Tangente von C in P durch eine Ebene x mit x konstant, so daß die Zylinderfläche Z projektiv gezogen ist. Die Familie dieser Zylinderflächen möge eine geschlossene singularitätensemble Freie Enveloppe S vom Zusammenhang der Ringfläche haben. Sind alle Punkte von C mit dem Mittelpunkt M und dem Durchmesser d von S die Ungleichung $g_{ij} = 0$ und $T_i = 0$, so ist S eine konvexe Zylinderfläche.

W. Schwabläuser (Bonn): Axiomatisierbarkeit der dimensionsfreien euklidischen Geometrie über geeigneten Körperr.

Für eine beliebige Klasse \mathcal{A} von angeordneten Körpern wird unter der dimensionsfreien euklidischen Geometrie $\Gamma(\mathcal{A})$ über Körpern aus \mathcal{A} die Menge der geometrischen Sätze (in einer geeigneten elementaren Sprache) verstanden, die für jede endliche Dimension $n \geq 2$ in den n-dimensionalen kartesischen Räumen über Körpern aus \mathcal{A} gelten.

Von H. N. Gupta wurde gezeigt, daß $\Gamma(\mathcal{P})$ über pythagoreischen angeordneten Körpern endlich axiomatisierbar ist, und die Frage gestellt, ob $\Gamma(\mathcal{O})$ über beliebigen angeordneten Körpern überliupt (rekursiv) axiomatisierbar ist. Diese Frage bleibt offen. Das Resultat wird folgendermaßen erweitert.

Ein Körper heißt k-pythagoreisch ($k \in \mathbb{N}$), falls sich jede endliche Quadrateigenschaft von Körperelementen schon als Quadrate von k Quadraten darstellen läßt. Sei \mathcal{P} die Klasse aller k-pythagoreischen angeordneten Körper. (Beispiele: \mathbb{P}_F, \mathcal{P}_R, der Körper der rationalen Zahlen liegt in \mathbb{P}_F, es gibt jedoch andere Körper, die in keinem \mathbb{P}_k liegen.) Dann gilt für jede rationale Zahl k der Satz: $\Gamma(\mathcal{P}_k)$ ist rekursiv axiomatisierbar (aber für $k \geq 2$ nicht endlich axiomatisierbar).

Zunächst läßt sich ein Axiomensystem angeben, so daß sämtliche endlichdimensionalen Modelle bis auf Isomorphie von der vorgegebenen Form sind. Auf Grund des Endlichkeitssatzes der Prädikatenlogik der ersten Stufe lassen sich jedoch unendlichdimensionale Modelle prinzipiell nicht aussuchen. Zu ihrer Behandlung dient der folgende Satz ($m \in \mathbb{N}$ beliebig): Sei \mathbb{B} ein Modell eines geeigneten Axiomensystems für $\Gamma(\mathcal{P}_m)$, $\mathbb{A} \subseteq \mathbb{B}$ ein k-m. k. Dann ist \mathbb{A} eine $(m + 1)$-gradig elementare Unterstruktur von \mathbb{B} im Sinne von D. Scott.

V. Ćurčić (Zagreb): Über die Rotationsflächen eines Flächenbüschels 2. Grades und über ein Rotationsflächensbüschel.

2. Es gibt zwei wesentlich verschiedene Fälle des Rotationsflächenbüschels. Im ersten Fall handelt es sich um das bekannte Rotationsflächenbüschel mit gemeinsamer Achse, und im zweiten um das Büschel, dessen Flächenachsen untereinander parallel sind und in einer Ebene liegen.

Im Jahre 1931 gab E. Krupa ein zweidimensionales Modell zur Darstellung des hyperbolischen und elliptischen dreidimensionalen Raumes, und zwar durch Normalprojektionen auf zwei zueinander senkrechte Ebenen im euklidischen Raum. Im Lauf der Zeit wurden verschiedene Modelle konstruiert, einerseits durch Übertragung bekannter Projektionsmethoden aus dem euklidischen Raum auf die nichteuklidischen Räume und andererseits durch Entwicklung von Projektionsmethoden, die für nichteuklidische Räume spezifisch sind. Hier werden einige zweidimensionale Modelle des hyperbolischen dreidimensionalen Raumes angegeben, die auf Projektionsmethoden beruhen.

K. Sörensen (Hamburg): Topologische geschlitzte Inzidenzgruppen und topologische normale Fastmoduln.

H. Vogler (Wien): Geodätische Koordinatensysteme mit pseudogeo-
dätischen Querlinien.

Die Parameterlinien eines geodätischen Koordinatensystems auf einer
Fläche bestehen bekanntlich aus einer Schar von geodätischen Linien und
ihren orthogonalen Trajektorien, im folgenden kurz Querlinien genannt. Es
werden jene geodätischen Parametermeite näher untersucht, deren Querli-
nien pseudogeodätisch sind. Nach W. Wunderlich versteht man unter einer
Pseudogeodätischen eine Flächenkurve, deren Schmiegungen gegen die in
den Oskulationspunkten berührenden Tangentialebenen der Querfläche
feste Neigung besitzen. Ist nun eine Querlinie eines geodätischen Koordina-
tensystems der betrachteten Art eben, so gilt dies für alle Querlinien des
Systems. Die Fläche ist dann eine spezielle Gerstlinie, die Geodätischen
des Parametersystems sind ebene Fallinien und ihre Trägerebenen umhüllen
einen Zylinder. Dieser Zylinder ist der gemeinsame Evolventenzylinder aller
pseudogeodätischen Querlinien des Netzes.

Spezialisert man dieses Ergebnis für geodätische Polarkoordinaten, so
kann man die Kugel durch ihre pseudogeodätischen Linien wie folgt kenn-
zeichnen: Ein Flächenstück, auf dem der pseudogeodätische Koordinaten-
systeme mit pseudogeodätischen Querlinien existieren, ist mit Notwendig-
keit Teil einer Kugel.

K. Voss (Zürich): Isometrie von Flächen bezüglich der zweiten Fun-
damentalf orm.

Eine Abbildung einer Fläche im Raum auf eine andere heißt II-Isometrie,
wenn die 2. Fundamentalform II bei der Abbildung invariant bleibt;
eine einparametrische Schar II-isoformetrisch aufeinander bezogener Flächen
heißt II-Verbiegung. Eine infinitesimale II-Verbiegung einer Fläche ist eine
Variation, bei der II stationär ist. Es wird bewiesen:
1. Es gibt Flächen (mit Gaußischer Krümmung ≠ 0), die eine nicht-triviale
II-Verbiegung gestatten, bei der außerhalb beider Hauptkrümmungen er-
halten bleiben.
2. Jeder echte Teil der Kugel gestattet infinitesimale II-Verbiegungen, bei
denen außerhalb beider Hauptkrümmungen stationär sind.
3. Die Kugel als Ganzes gestattet keine infinitesimale II-Verbiegung.

It has been shown by Bartletti [1] that the maximum number of points
upon a (1, 1)-arc in a finite plane of order 9 (= 2^3 when p is a prime
integer and h any positive integer) is, in the case where p and n are co-
integer, nq + n - q − 2. For n = 3 and q = 2^3 it follows that the maximum
value of k is 9. D'Orgovel [2] has shown that the points of (nq + n - q − 2,
3)-arcs may be divided into two types:
 a) Through the point pass q 3-secants and one 1-secant.
 b) Through the point pass q−1 3-secants and two 2-secants.
If all the points of an arc C are of the same type then C is called homo-
genous of type a) or type b. Both Bartletti and D'Orgovel have given con-
structions for homogeneous (9, 3)-arcs of type a).

W. Wunderlich (Wien): Eine Verallgemeinerung der Netzprojektion.

Im dreidimensionalen Raum mit projektiver, ellipischer, auf die eukli-
dische Kugel x^2 + y^2 + z^2 + 1 = 0 gegründeter Metrik wird zur Abbildung
dauf die Bildebene z = 0 jene doppelte Netzprojektion eingeführt, welche
durch die zur z-Achse im Cliffordischen Sinn rechts- bzw. linksparallelen
Strahlen vermittelt wird. Jedem Raumpunkt P werden auf diese Weise ein
„Rechtsschirm“ Pr und ein „Linksschirm“ Pl zugeordnet, wobei dist(OPr)=dist(OPl).
Eine Gerade q bildet sich auf ein euklidisches Kreispaa g, f g ab, wobei der
Radius von g gleich der vom Ursprung 0 aus gemessenen Zentraldistanz
von f g ist und umgekehrt.

Gleichzeitige Drehung der beiden Bildfelder um 0 mit konstanten Win-
kelschwindigkeiten α, β induziert im Raum eine eindimensionale Kollineations-
gruppe, die als Schraubung des elliptischen Raumes aufzufassen ist. Für
rationalen Schraubparameter p = β(β−α)/(β+α) liegt eine algebraische
Schraubung vor.

Verwendet man statt der Netzstrahlen, die als Bahn der Schraubun-
gen p = ±1 (Cliffordische Schiebungen) gedacht werden können, Schraub-
linien für einen Parameterwert p = ±1, 0, ∞ zur Projektion, so gelangt man
zu einem „Schraubstrahl“, der Gerade jetzt nicht mehr auf Kreise, sondern
auf euklidische Radlinien abbildet, und zwar auf Epitrochoiden für |p|<1,
on Hypotrochoiden für |p|>1. Bei der Abbildung einer Ebene tritt als wahr-
erner Umriss eine gerade Linie auf, die im Bild als gespaltene Radlinie erscheint.

T. Zamfirescu (Bochum): Comments on Hamiltonian paths.

Some remarks on 2- and 3-connected 3-valent graphs not possessing Ham-
tonian paths or circuits are made. The main contribution consists of an
example of a 3-connected 3-valent graph (hence the Schlegel-diagram of a
simple convex polytope) without Hamiltonian paths.

—78—
SEKTION IV:
Angewandte Mathematik

T. Andjelic (Belgrad): Einige Bemerkungen über nichtbolonome Bindungen zweiten Grades.

Die Frage der nichtbolonomen Bindungen zweiten Grades wird ausführlich erörtert. Es wird festgestellt, welche von diesen Bindungen einen dynamischen Sinn haben und welche nicht. Es stellt sich dabei heraus, daß eine Behauptung von Carathéodory, daß solche Bindungen, wenn sie skleronome sind, unbedingt homogen in der Geschwindigkeit sein müssen, wenn sie dynamisch sinnvoll sein sollen, nicht haltbar ist.

Weiterhin wird durch geometrische Deutung dieser Bindungen als Holographen (in dreidimensionalen Raum Flächen zweiten Grades und entsprechend im Konfigurationsraum mehrerer Dimensionen) ein einfaches Kriterium für die Verträglichkeit bzw. Unverträglichkeit solcher Bindungen gegeben.

Zum Schluß wird ein dynamisches Beispiel mit der Bindung
\[\ddot{x}^2 + \ddot{y}^2 - 2\ddot{z} = 0, \]
wo der Punkt die Ableitung nach der Zeit bezeichnet, behandelt und für den Fall der Bewegung eines Massenpunktes im Feld einer Widersstandschaft, welche der Geschwindigkeit proportional ist, gelöst.

F. Kappel (Gratz): Einige Probleme bei der Anwendung der direkten Methode von Ljapunov auf Stabilitätfragen von Kernreaktoren.

Bei einer allgemeinen Momentanbewegung \(B(T/T') \) in \(E \) sei \(\theta \) die Winkelgeschwindigkeit, \(\ddot{\theta} \) die Winkelbeschleunigung des Körpers \(T, \ddot{\theta} \) die Geschwindigkeit, \(\ddot{\theta} \) die Beschleunigung des Punktes \(O \in T \), wobei \(\theta, \dot{\theta}, \ddot{\theta} \neq 0 \). Unter der Bedingung (2) existiert der Beschleunigungssatz \(Q(T) \), dessen

\[\tau_{\theta} = J_1^4 \{ (\ddot{\theta} \theta + \dot{\theta} \ddot{\theta}) \} + \epsilon (\theta \ddot{\theta} + \dot{\theta} \ddot{\theta}) + \epsilon (\theta, \dot{\theta}, \ddot{\theta}) \} \]
\[\ddot{\theta} = J_1^4 \{ (\ddot{\theta} \theta + \dot{\theta} \ddot{\theta}) \} + \epsilon (\theta \ddot{\theta} + \dot{\theta} \ddot{\theta}) + \epsilon (\theta, \dot{\theta}, \ddot{\theta}) \} \]
\[\ddot{\theta} = \ddot{\theta} \theta + \ddot{\theta} \theta + \ddot{\theta} \theta + \ddot{\theta} \theta \]

Es sei \(G = R - G \) ein Außenraum, und es seien \(\epsilon, \mu \) positive, symmetrische Matrizen mit variablen Koeffizienten, die für genügend große \(|x| \) mit der Einheitsmatrix übereinstimmen. Dann gibt es genau eine Lösung \((E, H) \) der Außenraumlaufgabbvon der Maxwellschen Gleichungen

(1) \(\text{rot} E = -i

\begin{array}{|c|c|c|c|}
\hline
J_3 & J_2 & J_1 & \text{Flächentypen} \\
\hline
A & 0 & 0 & \text{Zweischaliges Hyperboloid} \\
A & > 0 & 0 & \text{Einschaliges Hyperboloid} \\
A & < 0 & 0 & \text{Regel} \\
\hline
J_2 & J_3 & J_1 & \text{Orthogonales hyperbolisches Paraboloid} \\
A & < 0 & 0 & \text{Gleichteiliger hyperbolischer Zylinder} \\
\hline
J_1 & J_3 & J_2 & \text{Zwei aufeinander senkrechte Ebenen} \\
A & < 0 & 0 & \text{Dreiseitiges hyperbolisches Paraboloid} \\
\hline
\end{array}

(2) \text{rot} \mu \text{grad} \text{div} E + \epsilon \text{grad} \text{div} H = 0 \\
\text{div} E = 0 \\
\text{div} H = 0 \\
\text{mit Helbrokraummethoden in einem beschränkten Gebiet diskutiert und u. a. gezeigt, daß es abzählbar unendlich viele Eigenwerte und zugehörige Eigen-
schwingungen gibt. Es sei \(K \) eine genügend große Kugel, die \(G \) enthält.

Dann erhält man die Lösung der Außenraumaufgabe, indem man Gl. (2) mit Hilbertraummethoden in dem beschränkten Gebiet \(K - G \) löst und die Lösung mit Hilfe der Integralgleichungsmethode geeignet fortsetzt. Aus der Rand- und Ausstrahlungsbedingung folgt dann die Bedingung \(\delta \mathbf{E} = 0 \) in \(G \). 4. b. die Lösung von Gl. (2) löst auch die Maxwellischen Gleichungen (1).

D. Mangeron (las) und M. N. Oguztoreli (Edmonton): Functional equations and optimal problems in distributed parameter control systems concerning polyvibrating systems.

Starting from their own research work related with „polyvibrating” equations [1] having as prototype the boundary value problem

\[
A(z)u'' + B(z)u' + C(z)u = 0, \quad u = 0 \text{ on the boundary of } R, \quad R = \{a \leq x \leq b\} (i = 1, 2, \ldots, m),
\]

or the corresponding variational problem of the minimum of the functional

\[
D(f) = \int_R A(x) f^2(x) dx,
\]

subject to the conditions that

\[
H(f) = \int_R \left[2B(x)f(x)f'(x) + C(x)f^2(x)\right] dx = +1 (or -1)
\]

and \(f(x) = 0 \) on the boundary of \(R \). The authors have considered in their very recent set of papers published in the "Rendiconti dell' Accademia Nazionale dei Lincei" various problems pertaining to the theory of polyvibrating systems. The novel aspect of the theory lies in the interpretation of \(R \) as a \(m \)-dimensional rectangular domain and the symbol \(\delta \) as designating „total differentiation” in the sense of Picone that

\[
u^1 = \delta u^1/\delta x^2 \ldots \delta x^m.
\]

In the present paper, using the dynamic programming approach, functional equations and optimal problems in distributed parameter control systems concerning polyvibrating equations are given and discussed.

K. Ritter (Karlsruhe): Nichtlineare Optimierungsprobleme in teilweise geordneten Banachräumen.

Es seien \(X, Y_0, \ldots, Y_n \) Banachräume. In jedem \(Y_j \) sei ein konvexer Ke gel \(K_j \) gegeben, durch den eine teilweise Ordnung von \(Y_j \) in der Weise definiert wird, daß für zwei Elemente \(y_j \) und \(y_k \) aus \(Y_j \) die Beziehung \(y_j \gg y_k \) genau dann gilt, wenn \(y_k - y_j \notin K_j \). Ferner sei \(P \) eine Abbildung von \(X \) nach \(Y_0 \) und \(g_1, \ldots, g_n \) seien gewisse Voraussetzungen an \(P \) und \(g_1, \ldots, g_n \).

P. Roos (Stuttgart): Eine Abschätzung des Quadraturfehlers mit Hilfe der Effizienz.

\[
\text{Wirken } (x) = \{x : o \leq x \leq \infty\} \text{ sei das abgeschlossene k-dimensionalen Einheitsintervall im reellen k-dimensionalen Kugelschen Raum } R \text{ mit den Intervallendpunkten } o = (0, \ldots, 0) \text{ und } e = (1, \ldots, 1) \text{ und die beidenzweipunktenden } x = (x_1, \ldots, x_k) \in X(x) \leq \infty \text{ sei das rechteckige Einheitsintervall.}
\]

\[
K = (1, \ldots, k) \text{ repräsentiert die Menge der k-dimensionalen Koordinatenachsen.}
\]

Ferner sei \(i = (i_1, \ldots, i_k) \subseteq K \). Dann bezeichnet \(W_i(x) = \langle x : o \leq x \leq 1, i_j = 1, j \notin i \rangle \) eine l-dimensionalen Seitenfläche von \(\text{Wirken} \). Die Projektion von \(x \) auf \(W_i(x) \) wird mit \(s(i, x) \) bezeichnet. Die Funktion \(f : \text{Wirken} \rightarrow R \) sei eine reellwertige, beschränkte Riemann-integrierbare Funktion. Das über \(W_i(x) \) genommene Riemannsche Gebietsintegral \(I(f) = \int f(x) dx \) soll durch den Mittelwert \(I(f)_i = (1/n) \sum j=1^n f_i(x) \) approximiert werden, wobei \(z = (z_1, \ldots, z_n) > \)

Eine Folge von Stützstellen \(z \in \text{Wirken} \) ist die Anzahl der Glieder von \(z \), die in dem Intervall \(Q = \{x : o \leq x \leq \infty\} \) mit den Endpunkten \(o = (0, \ldots, 0) \) und \(q = (q_1, \ldots, q_k) \leq \infty \) liegen. \(|Q| \) bezeichnet das Volumen von \(Q \). Die Größe

\[
D_i(f(x), r) = \int \frac{|f(x)|}{|z(x)| - |o|} dx, \quad r > 1,
\]

wird als Diskrepanz r-ter Ordnung der Folge \(z \) bezeichnet. Für \(r = \infty \) erhält man die gewöhnliche Diskrepanz der Gleichverteilungstheorie und für \(r = 2 \) den wichtigen Fall der (here modifizierten) von Hammersley eingeführten sogenannten Effizienz. Es gilt folgender Satz: Sind die partiellen Ableitungen \(\partial_i D_2(x) \) für alle nichtleeren \(i \subseteq K \) stetig in \(\text{Wirken} \) und ist \(r > 1 \), dann gilt

\[
\left| I_f(x) - I(f) \right| \leq D_i(f(x), r) \sum_{i=1}^{k} \left| \int_{|z|} f_i(x) / |z| \right| \delta_{z}(z) \delta_{z}(x),
\]

mit \(\delta_{z}(x) = d\lambda_{x_1} \ldots d\lambda_{x_n}, \quad \delta_{z}(x) = d\lambda_{x_1} \ldots d\lambda_{x_k} \).

D. Schmidt-R. Mennicken (Köln): Über lineare Differentialgleichungen mit sinusförmigen Koeffizienten.

Lineare Differentialgleichungen des Typs

\(y(x) + \sum_{k=0}^{m} a_k \sin(kx) + b_k \cos(kx) \cdot y'(x) = 0 \)

besitzen unter den Voraussetzungen \(a_k = 1 + \gamma_k \cdot \gamma_0, |\gamma_k| < 1 \) in den Streifen \(\mathbb{S}_k = (x; |\sin(x)| < |\gamma_k|), \mathbb{S}_b = (x; |\sin(x)| < 1/|\gamma_0|), \mathbb{S}_b = (x; 1/|\gamma_0| < |\sin(x)|) \) 2x-periodische holomorphe Lösungen. Eine komplexe Zahl \(v \) heißt charakteristischer Exponent der Differentialgleichung \((*) \) in \(\mathbb{S}_v(l = 1, 2, 3) \), falls zu \((*) \) eine nicht-triviale Lösung existiert, welche der Bedingung

\(y(x + 2n) = e^{iv}y(x) \quad (x \in \mathbb{S}_v) \)

genügt.

Die charakteristischen Exponenten in \(\mathbb{S}_1 \) und \(\mathbb{S}_2 \) sind elementar berechenbar. Die Bestimmung der charakteristischen Exponenten in \(\mathbb{S}_3 \) bereitet in allgemeiner Schwierigkeit.

Es zeigt sich, daß die charakteristischen Exponenten in \(\mathbb{S}_2 \) die Nullstellen in \(v \) einer zweifach-unendlichen Determinante \(\Delta(y; \gamma_1, \gamma_2, \lambda, k) \) vom "Poincaré-Ferrorschen Typ" sind. Diese Determinante läßt sich in eine Fourierreihe der Form

\[\Delta(y; \gamma_1, \gamma_2, \lambda, k) = \sum_{n=-m}^{m} \alpha_n \gamma_n(y, \gamma_1, \gamma_2, \lambda, k) e^{int} \]

entwickeln, wobei \(\alpha_n = 0 \), falls \(m \) gerade ist, und \(\alpha_n = 0 \), falls \(m \) ungerade ist. Die nicht- verschwindenden Koeffizienten \(\alpha_n \) können mit Hilfe einfacher linearer dreigliederiger Rekursionen berechnet werden. Damit ist die Berechnung der charakteristischen Exponenten in \(\mathbb{S}_2 \) zurückgeführt auf die Bestimmung der Nullstellen eines Polynoms \(m \cdot m \) Grades.

Da aber für die Verteilungsfunktion des irregulären Gravitationsfeldes (Holtmark-Verteilung) keine Lösung existieren kann, muß man im Rahmen der Hypothesen und der Theorie des fluktierenden Gravitationsfeldes nicht auf eine (asymptotische) Normalverteilung schließen, sondern die stochastische Prozeß im Geschwindigkeitsraum ist entsprechend den Eigenschaften der Holtmark-Verteilung einen anderen Markoffschen Prozeß, den so genannten Isotropischen, stabilen Prozeß in \(P_0 \) mit dem charakteristischen Exponenten 3/2 unter Hinzunahme der dynamischen Reibung zu approximieren.

Im Geschwindigkeitsraum ist die Bahn des "Teststernes" rechtssichtig stetig; deswegen ist es möglich, die Energie, die ein aus einem Sternsystem entstehender Stern abführt, sinnvoll zu berechnen, was innerhalb der Theorie der Brownschen Bewegung (stetige Bahnen!) nicht durchführbar ist. Eine fundamentale Folgerung ist, daß die Maxwellsche Verteilung keine Gleichgewichtsverteilung darstellt; Kugelsternhaufen dürfen z. B. nicht als isotherme Gaskugeln beschrieben werden.

J. P. Tschumy (Graz): Ein geometrisches Modell für die Theorie der Gleichungen dritter und vierter nomographiccher Ordnung.

Einer Gleichung \(F = 0 \) dritter oder viertor nomographischer Ordnung wird eine auf einem hyperbolischen Paraboloid \(P \) liegende Nettojolf \(N \), so zugeordnet, daß zwei Netzkurvenscharen von \(P \) fälle. Die dritte Netzkurvenschar wird aus \(P \) von dem Tangentialebenen eines allgemeinen Regels mit Spitze \(S \) oder von den Ebenen eines Büschels mit Träger \(s \) ausgeschnitten, je nachdem \(F = 0 \) von der vierten oder dritten nomographischen Ordnung ist.

Der Typus von \(F = 0 \) drückt sich in der Lage von \(S \) oder \(s \) bezüglich \(P \) aus; insbesondere gehören zu den bekannter kanonischen Formen sehr spezielle Lagen. Lageänderungen erzwinge man durch automorphe Kollinatio nen von \(P \), wobei sich diese in Substitutionen ausdrücken, die die nomographische Ordnung und den Typus von \(F = 0 \) erhalte.

Die klassischen kanonischen Formen sind i. a. nur über Lageänderungen von \(S \) oder \(s \) erreichbar. Der geometrische Weg legt andeutungsweise Normalformen nahe, zu denen man ohne Lageänderung gelangen kann.
Wahrscheinlichkeitsrechnung und Statistik

L. Arnold (Stuttgart) - H. Michalicek (Hamburg): Komplexwertige stabile Maße und deren Anziehungsgebiete.

Sei $M(R)$ die Banach-Algebra aller endlichen regulären komplexwertigen Maße auf der reellen Achse R (mit der Faltung als Multiplikation) und $B(R)$ die Menge aller Fourier-Stieljes-Transformationen $\gamma(t) = \int \exp(itx) \, d\mu(x), \mu \in M(R)$.

Es werden alle möglichen punktweisen Grenzwerte $\hat{\gamma} \in B(R)$ der Folge

$$ \{\gamma_n \} = \{ \int \exp(itx) n \, d\mu_n(x), n = 1, 2, \ldots \} $$

mit positiven μ_n und reellen μ_n angegeben. Dies ist eine Verallgemeinerung eines alten Problems aus der Wahrscheinlichkeitsrechnung. Die möglichen Grenzwerte sind stabil, d.h. für alle $a > 0, b > 0$ gibt es ein $c > 0$ und ein γ (reell), so dass

$$ |\gamma(a) - \gamma(b)| = |\gamma(c)| \exp(-rt) $$

gilt. Verschiedene Abschätzungen für die Norm stabiler Maße werden gegeben. Die Menge aller $\hat{\gamma} \in B(R)$, die von einem γ im obigen Sinne angezogen werden (Anziehungsgebiet von γ) wird charakterisiert.

Schließlich wird untersucht, in welchem Sinne die zugehörigen Maße gegen das Grenzmaß konvergieren.

Literatur:

W. Böge (Heidelberg): Shannon's theorem without entropy.

Shannon's theorem (in information theory) becomes false, when extended to finite alphabet stationary sources instead of ergodic ones (or to a larger class of not necessarily ergodic channels), but becomes correct again (Winkler/Bauer), if the mean entropy of the source is replaced by its cardinality rate k and the entropy in the theorem by its what I shall call "cardinality rate" k and the entropy of the channel by its "discernibility rate" d, concepts more directly connected with the coding problem and -- up to a normalization -- uniquely determined by the extended Shannon's theorem, and which coincide with the former concepts in the ergodic case.

The extended theorem says: $k < d \implies z = 0 \implies z = 0 \implies k \leq d$, where $z[\cdot]$ is the upper (lower) limit for $t \to \infty$ of the [time mean of] error probability, when words length t of the source are encoded, then sent through the channel and decoded in the best possible way.

As I found out, entropy can also be avoided in the proof, if one proves first (in a very elementary way) the following scheme of implications (\(\implies\) indicating $\lim inf$)

\[
\begin{align*}
(0) \quad &k < d \implies z = 0 \implies z = 0 \implies k \leq d \quad (3) \\
(1) \quad &k < d \implies z = 0 \implies z = 0 \implies k \leq d \quad (4) \\
(2) \quad &k < d \implies z = 0 \implies z = 0 \implies k \leq d \\
\end{align*}
\]

where the crucial implication (\(\implies\)) can be proved in the important cases by applying the arbitrary good codes blockwise to arbitrary long words. Thus (2)\(\implies\)(3) with trivial channels (identity maps, fulfilling $d = d$ already) gives $k = k = k$ for stationary sources especially. Similarly (1)\(\implies\)(4) with trivial sources (equidistributions, fulfilling $k = k = k = k$ already) gives $d = d = d$ for channel fulfilling (4). For these channels and stationary sources the extended Shannon's theorem then results from the paths (0)\(\implies\)(3).

G. Feichtinger (Bonn): Grenzwertsätze für stochastische Automaten.

Es werden die mit derartigen Modellen verknüpften stochastischen Prozesse untersucht, welche im Zustandsraum Z und in den Ereignismengen A und E ablaufen. Für einfach konfigurierte Eingabezustände handelt es sich beispielsweise um homogene Markovketten mit darauffindeten zufälligen Funktionen.

K. Fischer (Stuttgart): Über Erwartungswerte zufälliger Wegläufe in Gebieten mit Klasseneinteilung.

Gegeben sei der W-Raum (Ω, A, P): Auf $\Omega \times \Omega$ sei eine reelle Zufallsvariable D erklärt. Die Überdeckung der Anforderungen an eine Metrik in Ω erfüllt. Der Erwartungswert von D (mittlerer Abstand zweier Punkte) existiere und werde mit d bezeichnet. Wir betrachten Zeilengaben von Ω in m disjunkte meßbare Klassen Ω_i mit $P(\Omega_i) = p > 0$ für $i = 1, 2, \ldots, m$. Entsprechend wird mit d_i der Erwartungswert des Abstands zweier Punkte aus Ω_i bezeichnet, wobei der erste Punkt in Ω_i und der zweite Punkt in Ω_j liegt. Dann gilt der Zusammenhang

\[
-86-
\]

- 87 -
Hierbei ist \(\mathcal{D} \) die Raum der stetigen reellen Funktionen auf \(D \). Zu \(\mathcal{X} \) bzw. \(\mathcal{Y} \) läßt sich für jedes \(f \in \mathcal{O}(\mathcal{X},\mathcal{D}) \) bzw. \(U \in \mathcal{O}(\mathcal{X},\mathcal{Y}) \) die Risikofunktion \(R_U(t) := \langle f(t), P_U \rangle \) bzw. \(R_U(t) := \langle U(t), P_U \rangle \) für alle \(t \in \text{Def} \) definieren, wobei \(p \) die \(t \)-Projektionsabbildung ist. Ist nun \(\mathcal{Y} \) ein beliebiges Experiment \((Y,F,(Q_{1n})_{n \geq 1}) \) und \(t \geq 0 \), so heißt \(\mathcal{X} \) \(t \)-informatorisch als \((\mathcal{B}(\mathcal{X},\mathcal{Y}), \mathcal{E}_t) \), falls es zu jedem \(D \) und jedem \(f \in \mathcal{O}(\mathcal{X},\mathcal{D}) \) ein \(U \in \mathcal{O}(\mathcal{X},\mathcal{Y}) \) gibt mit \(R_U(t) \geq R_U(t) + \varepsilon \). Seien \(\mathcal{B}_n = (U \in \mathcal{O}(\mathcal{X},\mathcal{Y}) : U(t) = \mathcal{X} \text{ für alle } t \in [0,T_n]) \) eine Familie von Abbildungen von \(\mathcal{Y} \) in sich. Dann sind unter gewissen Voraussetzungen für die Familie \(\mathcal{B}_n \) die folgenden Aussagen äquivalent: (1) \(\mathcal{Y}(\mathcal{X}) \mathcal{E}_t \) \(\rightarrow \mathcal{Y} \) für alle \(\varepsilon > 0 \); (2) Es existiert ein \(\mathcal{E}_t \)-invariantes \(T \) \(\in \mathcal{B}_n \). Der Satz gestattet Anwendungen insbesondere auf die Theorie der translationsinvarianten topologischen Experimente.

W. Knödel (Stuttgart): Über die Verteilung der Binärziffern einer gemessenen Größe.

R. Liebl (Innsbruck): Maße auf Sprachen.

Die Wahrscheinlichkeit eines Satzes aus einer Sprache \(S \) wird definiert als die Wahrscheinlichkeit, daß dieser Satz bei einer Interpretation in einer darstellenden Sprache erreicht wird. Die Axiome der H. Günther erfüllt. Durch ein Axiomensystem in \(S \) bekommt man für jeden Satz aus \(S \) eine Information.

J. Novák (Prag): On probabilities defined on a certain class of non-Boolean algebras.

Let \((\mathcal{T}, \mathcal{E}) \) be a unitary ring consisting of \(k \) elements. Denote with \(XT \) a Cartesian product of sets \(\mathcal{T} \) where \(\mathcal{T} \mathcal{E} = T \) for each \(t \mathcal{E} \). Define \(\lim m = t \) in \(T \) whenever \(m = t \) for nearly all \(n \). Further define \((t_n + u_n) = (t_n + u_n) \). \((t_n + u_n) = (t_n + u_n) \). \(\lim (t_n + u_n) = (t + u) \) for each \(t, u \) there corresponds a proposition \(h(t_n) = (h(t_n)) \). This is a consistent of \(k \) disjoint subsets of \(T \) such that \(DA = I \). The set of \(t \mathcal{E} \).

--- 88 ---
all \((A_i) \) will be denoted by \(\hat{i} \). Define on \(\hat{i} : (A_0) + (B_0) = (A_0 \cup B_0), (A_0) \cdot (B_0) = (A_0 \cap B_0), \lim (A^n) = (\lim A^n) \).

Then the map \(\hat{i} \) is an isomorphism and a homeomorphism.

Now fix an element in \(T \), say \(O \), and denote \(T' = T - \{O\} \). Let \(D \) be a unitary subring of \(XT \). We say that \(D \) has property (a) (provided that the following condition is fulfilled): If \(a \) occurs in some \((A_i) \in D \) and \(b = \{(A_i)\} \in D \) then for each \(s \in T' \) there is an element \((B_e) \in D \) such that \(B = A, \ B = a \) for \(t \neq s, t \in T' \). (All \(A \) like this form a set algebra \(A \).) Now it is possible to define a probability measure \(p \) on \(D \) fulfilling (a) as follows: Let \(P_{\hat{i}} = P \) be probability measures on \(\hat{i} \). If \((t_i) \in D \), then put \(p(t_i) = \sum P_{\hat{i}}(A_i) \) where \(A_i = \{t_i\} \). Then \(p \) is nonnegative, additive, continuous on \(D \) such that \(p(O) = 0, p(e) = 1 \), \(e \) being the unit of \(T \). If \(p(t) = P \) for each \(t \in T' \), then \(0 \leq p(t) \leq 1 \). Otherwise there is an element \((\omega) \in D \) such that \(p(\omega) > 1 \).

P. Weiβ (Innsbruck): Subjektive Unsicherheit und subjektive Information.

Dieser Vortrag soll nun einen Weg aufzeigen, der es ermöglicht, sowohl den Beobachter, als auch die Art der Mitteilung informationstheoretisch zu berücksichtigen. Der daraus resultierende Begriff der subjektiven Unsicherheit enthält sowohl den Shannon’schen als auch den König’schen Unsicherheitsbegriff als Spezialfälle.

W. Wertz (Wien): Über gewisse nichtparametrische Schätzfolgen.

\(B \) sei eine nichtlineare Klasse von Dichten über dem \(R \). Jede Folge \((h_k)_{k \in \mathbb{N}} \) von \(B \) \(\longrightarrow \) \(B \) messbaren Funktionen \(h_k: R \times \mathbb{R} \rightarrow R \) heißt eine Schätzfolge für \(f \in B \). \(k \) sei eine beschränkte, Borel-messbare, integrierbare Funktion über dem \(R \) mit \(\int K(x) \, dx = 1 \), \(\lim_{x \rightarrow \pm \infty} |x K(x)| = 0 \) und \(\lim_{x \rightarrow \pm \infty} |x K(x)| = 0 \).

Es wird das asymptotische Verhalten von Schätzfolgen der Gestalt
\[
(x; x_1, \ldots, x_n) \rightarrow h_k (x; x_1, \ldots, x_n) = \frac{1}{k} \sum_{i=1}^{n} K\left(\frac{x-x_i}{k} \right); n \in \mathbb{N}
\]
unter verschiedenen zusätzlichen Bedingungen für die Klasse \(B \), die Folge \((h_k) \) und die Funktion \(K \) untersucht.

Die Risikosituation einer Versicherungsgesellschaft kann für ein bestimmtes Versicherungsjahr durch das vorhandene Kapital \(K \) und durch die Verteilungsfunktion \(F(x) \) der Summe der gedeckten Schäden beschrieben werden. Bezeichnet \(G(z) = 1 - F(K + z + 0) \), die Verteilungsfunktion für das nach Abwicklung der Versicherungen verbleibende Endkapital \(z \), dann kann die Güte der Risikosituation mit Hilfe der Nutzenfunktion
\[
N[G(z)] = \int n(z) \, dG(z)
\]
bewertet werden; \(n(z) \) bedeutet hier die zugrundegelegte Bewertung eines Geldbetrages der Höhe \(z \). Rationalen Bewertungen erfüllen die beiden Bedingungen \(n^2(z) > 0 \) und \(n^2(z) < 0 \). Insbesondere die zweite Bedingung ist eine der „Risikokonversion“, welche Voraussetzung für den Abschluß einer Versicherung ist.

Die Überlegungen lassen sich verallgemeinern, indem nicht nur die Risikosituation eines bestimmten Versicherungsjahres, sondern der gesamte zukünftige Versicherungsverlauf in die Betrachtungen einbezogen wird. Mit Hilfe von Modellen aus der kollektiven Risikotheorie läßt sich zeigen, wie die Politik der Gesellschaft beim Abschluß von Versicherungen in der Rückversicherung und in der Dividendenzahlung verbessert werden kann.

Alle Überlegungen beruhen auf der Voraussetzung rationaler Entscheidungen der Gesellschaft, die jedoch, wie gezeigt werden kann, nicht weiteres angenommen werden dürfen.
SECTIO VI:
Numerische Mathematik und Informationsverarbeitung

K. Graf Finck von Finckenstein (Garching/München): Über die numerische Behandlung der n-dimensionalen Wellengleichung.

1964 wurden von P. D. Lax und B. Wendroff Differenzenschemata 2. Ordnung zur numerischen Lösung linearer hyperbolischer Differentialgleichungen mit konstanten Koeffizienten untersucht. Es wurde für diese Schemata ein hinreichendes Stabilitätskriterium hergeleitet: Seien h die Zeit- schrittweite und $a_i, b_i, i = 1, \ldots, n$ die Ortschrittweiten des Gitternetzes. Dann lautet das Stabilitätskriterium:

$$
\mu_i \geqslant \| A_i \| \cdot \sqrt[n]{n},
$$

wobei A_i die Koeffizienten der Differenzengleichung sind. Dieses Kriterium läßt sich für den Fall der Wellengleichung

$$
\frac{\partial^2 u(x,t)}{\partial t^2} = \sum_{i=1}^{n} c_i \frac{\partial^2 u(x_i,t)}{\partial x_i^2},
$$

mit $c_i > 0$, konstant, reell und $x_i := (x_1, \ldots, x_n)$ verschärfen. Formt man diese Gleichung in einem hyperbolischen System um, so ergibt sich ein hinreichendes Stabilitätskriterium:

$$
\mu_i \geqslant c_i \cdot n, \quad (i = 1, \ldots, n),
$$

Bei einem Differenzenschema 1. Ordnung hat man im allgemeinen Fall:

$$
\mu_i \geqslant \| A_i \| \cdot n, \quad (i = 1, \ldots, n),
$$

und im Fall der Wellengleichung:

$$
\mu_i \geqslant c_i \cdot \sqrt{n}, \quad (i = 1, \ldots, n),
$$

Diese letzte Bedingung ist auch notwendig für Stabilität.

Th. A. Fuchs (Wien): Theorie und Praxis der Simulationsmodelle.

Nicht immer kann man Optimierungen im Sinne des Simplex-Algorithmus durchführen. Hier erweist sich die Anwendung von Simulationsmodellen als gute und brauchbare Annäherung an die angestrebte optimale Lösung. (Forts.)

R. F. Gloden (Ispra): Calcul des fonctions de Bessel I_n, J_n, K_n et Y_n moyennant les fractions continues.

On sait que la fonction de Bessel I_n qui constitue la solution distinguée d'une relation de récurrence, se calcule difficilement à partir de celle-ci pour n élevé; cependant le quotient de deux fonctions I_n d'indices consécutifs s'exprime aisément au moyen d'une fraction continue infinie. Nous en avons déduit un algorithme pour calculer les fonctions I_n.

Pour évaluer l'erreur, nous tenons compte du fait que la valeur d'une fraction continue à termes positifs est comprise entre celles de deux réduites consécutives. En outre l'erreur relative, qui constitue une fonction de l'abscisse x, de l'indice n et du nombre m de termes des fractions continues est pratiquement indépendante de n pour $n \geq 10$. C'est pourquoi nous avons déterminé le nombre de termes correspondant à une erreur relative maximale égale à 10^{-10} en valeur absolue.

Le raisonnement précédent s'applique également aux fonctions J_n; cependant l'erreur relative concernant les fonctions J_n peut être supérieure à 10^{-10} au voisinage des zéros de $J_n(x)$, $k = 0,1, \ldots, n-1$.

Ces considérations nous ont permis d'établir des sous-programmes en double précision pour l'IIBM 7090, destinés à calculer les fonctions de Bessel I_n, J_n, K_n, et Y_n, $n \leq 50$, moyennant les fractions continues.

R. Gorensflo (Garching/München): Lineare parabolische Differentialgleichungen und Differenzenschemata vom Irrfahrt-Typus.

Für die n-dimensionale partielle Differentialgleichung von Fokker und Planck (Vorwärtsdifferentialgleichung von Kolmogorov) mit orts- und zeitabhängiger Drift und Diffusionsmatrix werden, unter einigen zusätzlichen Bedingungen, explizite Differenzenschemata konstruiert, die als Beschreibung in kontinuierlicher Zeit und homogener Irrfahrt auf den diskreten Punkten aufgefaßt werden können. Diese Schemata sind stabil in der Maximum-Norm und können als diskrete Modelle des Diffusionsprozesses dienen. Mit ihrer Hilfe kann man bei gegebener Anfangsbedingung die Differentialgleichung numerisch approximativ lösen oder aber den zugrundeliegenden Diffusionsprozeß durch Monte-Carlo-Simulation approximativ behandeln und veranschaulichen.

R. J. Jlié (Kragujevac): Application de la méthode N. Salkykoow aux équations aux dérivées partielles de Dynamique.

D'après la théorie de N. Salkykoow, les équations aux dérivées partielles de Dynamique, à trois paramètres, intégribles par séparation des variables ont 8 types: un type qui correspond à une équation appartenant à la troisième classe supérieure, trois types d'équations de la seconde classe, trois types d'équations de la première classe, et un type d'équations correspondant à l'intégrale générale.

Zu tabellieren sei \(J(x) = \int \frac{f(t)dt}{\sqrt{t}} \) auf \(0 \leq x \leq b \). Der Integrand \(f(x) \) sei auf \([0, b]\) stetig mit dort beschränkstückweise stetiger Ableitung. Auf \([0, b]\) folge \(|\int f(b^2)| \leq \text{const} |x^{\alpha + 1}| \) für \(\alpha, \beta > 0 \), \(\beta > 0 \). (1) Setzt man \(\alpha = 1 \), so gilt \(\int_0^b f(x)dx = \int_0^b f(bx)dx \) für beliebige \(b > 1 \).

Man geht von einem Anfangswert \(J_0 \) und einem Paa \(J_n, J_{n+1} \), aus und berechnet sukzessiv \(J_n \) (1) an den Stellen \(\beta^m \), \(\beta^{2n} \), \(\beta^m \).

Die Herleitung der Formeln geschieht in vier Schritten: (1) Ableitung einer allgemeinen Summenformel für beliebige Intervallteilung; (2) Hauptsatz zur zugunsten der Formeln; (3) Konvergenzuntersuchung (z. B. für monotone Integranden) und des 2. Mittelwertsatzes; (4) Übergang zu den Differenzengleichungen.

Umformungen: Cauchysche Hauptwerte, Integrale mit endlichen Intervall ine usw. überführt man durch einfache Substitutionen in \(\int f(x)dx \).

Anfangswerte: Man setzt \(\beta = 2 \) und schätzt \(J_0 = J(\beta) \) mit einem großen Schrittweitenvergleich, z. B. \(\beta = 1/2 \).

Genauigkeit: Für eine sehr umfangreiche Integranenklasse und \(\beta < \beta^2 \) folgt \(J_n^*-J_n^* \) den Fehler von \(J_n^* \) verhältnismäßig auf eine gute Stelle.

Singuläre Integralgleichungen (lineare, nichtlineare, reelle, komplexe, z. B. Volterra- oder Fredholm-Typ) lassen sich i. a. numerisch nach geeigneten Substitutionen vermittels der linken Differenzengleichung mit einfacher, parallel laufender Fehlerrechnung lösen.

H. Meißner (Hamburg): *Datenverarbeitung im Gymnasium.*

Bericht über eine schulgerechte Einführung in die Arbeitsweise elektronischer Datenverarbeitungsanlagen am Beispiel einer Handrechenmaschine: Einstellung, Resultat und Umdrehzahldrehzahl der Handrechenmaschine lassen sich als Speicherplätze für Zahlen auffassen. Durch geeignete Kurbeln kann man den Inhalt eines Speichers in einen anderen Speicher bringen, wobei dessen Inhalt ersetzt wird durch die Summe oder die Differenz der beiden Inhalte oder nur durch den neuen Inhalt.

K. Orlov (Beograd): *New and old spectral methods in solving algebraic equations.*

Spectral methods based on M. Petrovitch's mathematical spectra may be applied to very different problems of analysis, algebra and number theory. Most worked out is the application of mathematical spectra to the first part of Graff's method — transformation of equations.

It is known that the fundamental transformation equation

\[
(1) \quad Q(y) = (-1)^n P(x) P(-x),
\]

when treated in the usual way, gives a sequence of equations expressing the coefficients \(b_j \) of the polynomial \(Q \) as functions of the coefficients \(a_j \) of the polynomial \(P \). For the effective calculation of all coefficients \(b_j \) (\(n \) even there should be done in all \(5n^2 + 4n + 4 \) operations).

The old spectral method (C. R. Acad. Sci. Paris 234/1952, 1299-1270) transforms the equation (1) into a single relation between the ordinary spectral \(S \) of the polynomial \(Q \) and the spectra — ordinary \(S \) and corrected \(\tilde{S} \) — of the polynomial \(P \), having the form

\[
S = \tilde{S} - h \cdot \tilde{S}.
\]

where \(h \) is a conveniently chosen natural number. For such an effective calculating only \(n + 4 \) operations are necessary in all.

The new spectral method utilizes new operations of choosing, reduces the equation (1) again to a single relation between the spectra of the polynomial \(Q \) and that of polynomials \(P_r \) and \(P_e \) (even and odd part of the polynomial \(P \)) having the form

\[
S = S - h \cdot S \quad \text{or} \quad S = Q(10h),
\]

where \(S \) is a conveniently chosen natural number. For such an effective calculating the necessary only \(11 \) operations, independently of the degree \(n \) of the equation.

A. Pignedoli (Bologna): *Transfinite Methoden für Transportprobleme.*

Einige Untersuchungen der Schule von Bologna über das Problem der Boltzmannschen Gleichung der Transporttheorie werden vom transfiniten Standpunkt aus betrachtet.

Bei Stabilitätsuntersuchungen von Diskretisierungsverfahren zur Aufklärung von gewöhnlichen Differentialgleichungen tritt das Problem auf, die „Stabilitätspolygone“ möglichst optimal zu wählen: Zu festen \(n \) und \(k \)
Es wird eine Methode für die Konvergenzbeschleunigung verschiedener Iterationsverfahren für die Lösung des linearen Gleichungssystems $Ax = b$ untersucht. Es handelt sich um die mit Hilfe der Iterationsformel $x_{k+1} = P_{k}^{-1}Q_{k}x_{k} + P_{k}^{-1}b$, $v = 0, 1, 2, \ldots$, definierte Methode, wo P_{k} und Q_{k} spezielle Zeilenelemente der Matrix A, der den Spektralradius $\rho(P_{k}^{-1}Q_{k})$ der Matrix $P_{k}^{-1}Q_{k}$ kleinere ist. Es ist bekannt (s. z. B. Issacson, Keller: Analysis of Numerical Methods, 1966.), daß im Falle eines reellen Spektrums der Matrix $P_{k}^{-1}Q_{k}$, der Spektralradius $\rho(P_{k}^{-1}Q_{k})$ für $k_0 = 1 - \frac{m}{M+m}/2$ seinen Minimalwert erlangt, welcher der $M/m/(2M-m)$ gleich ist. $M = \max \lambda_{i}$, $m = \min \lambda_{i}$, $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots \leq \lambda_{n}$ sind die Eigenwerte der Matrix $P_{k}^{-1}Q_{k}$.

Es ist immer $0 < k_0 < 2$.

Im Falle eines komplexen Spektrums der Matrix $P_{k}^{-1}Q_{k}$ ist die Bestimmung des optimalen Parameters etwas schwieriger. Es gilt allgemein, daß $\min \rho(P_{k}^{-1}Q_{k}) = \min \lambda_{i}/(k+1)$. Man kann beweisen, daß im Falle $\lambda_{k} = 0 < k_0 < 2$ ist. Im Falle, daß die Eigenwerte der Matrix $P_{k}^{-1}Q_{k}$ im Einheitskreis in gewisser Art verteilt sind, kann man leicht den optimalen Parameter k_0 nach folgendem Satz feststellen: Sei $|\lambda_{i}| \leq \lambda_{0} = 1$, $i = 1, \ldots, n$ und mögen alle Zahlen $\lambda_{i} = \lambda_{i}-1$ im Durchschnitt der Kreise K_{i} und K_{i} liegen, wo

$$S_{K} = [-1:0], \quad \mathbb{R}_{K} = [\lambda_{0}], \quad S_{K} = \{[\mathbb{A}A_{i}]^{2}/(\mathbb{R}A_{i}) : 0\}, \quad \mathbb{R}A_{i} = \sqrt{\{[\lambda_{0}]^{2}/(\mathbb{R}A_{i})\}},$$

Dann ist $k_0 = k_0 = \lambda_{0}/(\mathbb{R}A_{i})$ und $\rho(P_{k}^{-1}Q_{k}) = \rho(\mathbb{R}A_{i})\lambda_{0}/(\mathbb{R}A_{i})$. Wenn λ_{0} auf dem Rand des Kreises K, liegen, wo $S_{K} = [-1/2:0]$, $\mathbb{R}A_{i} = 1/2$, so ist $k_0 = k_0 = 1$, sodaß gerade die ursprüngliche Sprich $P_{k}^{-1}Q_{k}$ optimale Spektralradius besitzt.

Im Falle, daß es sich um ein komplexes Iterationsverfahren handelt, kann man eine weitere Konvergenzbeschleunigung an Hilfe des komplexen Parameters $k < 0$ erreichen. Man kann beweisen, daß der optimale Spektralradius k_0 immer im Kreise K_{i} liegt, wo $S_{K} = [1:0], \mathbb{R}A_{i} = 1$.

--- 96 ---

V. Štepiński (Ostrava): Zentrale Nomogramme.

Zentrale Nomogramme für Beziehungen bis zu zwölf reellen Veränderlichen, Zentrale kartesische Nomogramme und zentrale Nomogramme für Beziehungen bis zu sechs Veränderlichen mit einer Skala auf derselben quadratischen Linie. Zentrale Nomogramme für Beziehungen bis zu sechs komplexen Variablen.

S. K. Zarembo (Swansea): Über zahlentheoretische Methoden für die numerische Berechnung mehrfacher Integrals.

Es sei f eine Funktion, die über dem s-dimensionalen Quader Q_5: $0 < s, t \leq 1$ ($i = 1, \ldots, s$) erklärt ist und partielle Ableitungen bis $\sum_{0}^{m-1} f_{x_{1}}^{m-1}$, $\sum_{0}^{m-1} f_{x_{2}}^{m-1}$, $\sum_{0}^{m-1} f_{x_{3}}^{m-1}$ auf endengeregneten Seiten von Q übereinstimmen sollen. Wenn man dann den Durchschnittswert von f über p durch einen guten Gitterpunkt modulo p erzeugt Punkten von Q als den Wert des Integrals von f über Q annimmt, so ist der Fehler $O(p^{-\frac{m}{s}+\delta})$. Die Forderung, daß f und ihre partiellen Ableitungen auf endengeregneten Seiten von Q übereinstimmen sollen, kann umgangen werden. Eine von Korobov empfohlene Methode ist kaum praktisch, da sie zu unübersichtlichen Werten der partiellen Ableitungen der Integranden führt. Eine andere, von diesem Einwand freie Methode wird vorgeschlagen.

Für $s = 2$ konstruieren man die bestimmten Gitterpunkte mit Fibonaccizahl. Der Fehler ist dann sogar $O(p^{-\frac{s+1}{2}})$. Für $s > 1$ ist kein Rezept für gute Gitterpunkte vorhanden. Gitterpunkte, die nach der Anweisung von Korobov für $3 \leq s \leq 10$ gefunden wurden, sind bei weiteren nicht die bestimmten, obwohl sie bei ihnen "optimal" heißen; der Redner hat keine künstlichen Rechenmittel einige erhebliche besser gefunden. Hoffentlich wird die Suche nach den besten Gitterpunkten weiter geführt; aber schon mit $s = 2$ lohnt es sich, die vorgeschlagenen Methoden anzuwenden.
O. Zaubek (Wien): Beiträge zur genäherten Durchführung des Newtonischen Nullstellenverfahrens.

Ausgehend von einem Konvergenz- und Abschätzungssatz für das (genaue) Newtonsche Nullstellenverfahren (dennmlich in Sitzungsber. Österr. Akad. Wiss.), wird in ganz einfacher Weise folgendes Hauptergebnis hergeleitet: Ist die reelle Funktion \(f(x) \) der reellen Veränderlichen \(x \) im abgeschlossenen Intervall \(I: [x_0, x_0 + h], \) bzw. \([x_0 - h, x_0] \) zweimal ableitbar und ist

1. \(f(x_0) \cdot f'(x_0) < 0, \) bzw. \(> 0, \)
2. \(0 < m_1 \leq |f'(x)| \) und \(|f''(x)| \leq M_2 \) in \(I, \)
3. \(f'(x_0) \leq h m_1, \)
4. \(0 < |f'(x_0)| \leq M_1 h^2 \leq 1, \)

ist ferner \(f' \) das zu \(f \) konzentrische abgeschlossene Intervall mit der Länge \(h' = h + 2 m_1 \cdot |f(x)| \) und ist in \(I' \)

\[G(x) = |f(x)| + |f'(x)| + |f''(x)| \leq N_1 < 1 \]

kann schließlich in jedem Punkt \(x \) von \(I' \) \(G(x) = x - f'(x) \) durch die Rechnung mit einem absoluten Fehler \(\leq \alpha \) bestimmt werden, so wird die in \(I' \) die Nullstelle \(r \) von \(f(x) \) durch die Folge \(\{x_n\} \) der angenäherten Verfahrenswerte \(x_n \) durch \(x_n = x_n^0, y_n = G(x_n) \) durch den Fehlerabschätzung:

\[|x_n - r| \leq \frac{2 m_1 |f(x)| \cdot |f'(x)|^{2 n-1} + \alpha}{[2 m_1]^n} \leq N_1 \cdot \]

Wird das angenäherte Verfahren genügend lange fortgesetzt und dabei mit einer beschränkten (festen) Stellenanzahl gerechnet, so geht es mindestens einen und höchstens endlich viele Verfahrenswerte \(x_n \), welche mindestens zweimal angenommen werden. Ist insbesondere \(N_1 < 1/2, \) so gibt es höchstens zwei angenäherte Verfahrenswerte \(x_n \) und \(x_{n+1}, \) welche mehrmals angenommen werden. Dies der Fall und ist \(x_n < x_{n+1} \), so ist \(x_n < r \) \(\leq x_{n+1} \), so dass in der endliche Zahl \(\alpha \) durch die Zahlenfolge \(\{x_n\} \) \(\alpha \)-angenähert, wenn für jedes \(\alpha > 0 \) für fast alle \(n \alpha = a \cdot \frac{\epsilon}{a} < a < a + s \) ist.

SEKTION VII:

Geschichte und Philosophie

Da der VII. österreichische Mathematikerkongress in der Hauptstadt des Bundeslandes Oberösterreich, in Linz, stattfand, sei zuerst eine der beiden Wiener Universitätsprofessoren Johannes von Gmund aus und Johannes Stabius.

99---

* Peuerbach (Oberösterreich), 30. Mai 1423, † Wien, 8. April 1461.

G. Krop (Berlin): Archimedisches Prinzip in der Elektronik.

G. Loch (Innsbruck): Der Lehrplan für Mathematik in den ersten beiden Universitätsjahren.

Es wird die Meinung vertreten und zur Diskussion gestellt, daß für das Lehramt aus Mathematik (mit und ohne andere Fächer) für das Diplom aus Mathematik, das Diplom aus Physik, das Doktorat aus Mathematik und das Doktorat aus Physik in den ersten beiden Jahren dieser Lehrplan gelten soll.

Entscheidender Vorteil: Der Student braucht das Studienziel erst nach zwei Jahren, wenn er sich eine Zukunft verspricht, die ihm gesichert ist. Zwei Lehrplanverträge, die im Innsbruck ausgehandelt wurden, werden vorgelegt.

Die ersten beiden Jahre sollten die Grundausbildung des Mathematikers bewirken. Wichtigste Fragen: Können die Studenten soviel in zwei Jahren wirklich bewältigen? Wenn nicht, wie lange brauchen sie dazu? Fehlt wesentlich zur Grundausbildung gehörenden Stoff?

Bei der Ermöglichung des Mathematikunterrichtes sind sowohl quantitative, als auch qualitative Gesichtspunkte zu bedenken. Es besteht wohl kein Zweifel, daß gewisse Gebiete der Mathematik neu aufgenommen werden müssen, wie etwa die Grundbegriffe der Mengenlehre, die Definitionen der wichtigsten algebraischen Strukturen, die Elemente der linearen Algebra. Um dafür Raum zu gewinnen, müssen wohl Bestandteile des bisherigen Stoffes, die heute nicht mehr wichtig sind, ausgeschieden oder stark reduziert werden (z. B. gewisse Kapitel der Geometrie, arithmetische Reihen). Was die qualitativen Änderungen betrifft, so sollte wesentlich mehr Wert auf das logische Grundgerippe der einzelnen Gebiete gelegt werden (einzelfache Definitionen, klare Formulierung der Sätze, keine Scheinbeweise, sondern vollständige oder gar keine). Eine Gefahr besteht in der Fehler- schätzung der Schwierigkeit von mathematischen Theorien; es scheint manchmal der Lehrer Dinge für schwieriger zu halten, als sie für den Schüler wirklich sind und dies führt zu unnötigem Breitkreisen und Zeitverlust. Daher wäre die Sammlung von Erfahrungsmaterial (Versuchsklassen) sehr wichtig.

TEILNEHMERVERZEICHNIS

Mitglieder der Österreichischen Mathematischen Gesellschaft sind durch einen Stern gekennzeichnet.

Vortragende sind an der in Klammer nachgesetzten Nummer der Vortragssitzung kenntlich.

Ahrens Ingrid, Dipl. Math., Berlin
* Aigner Alexander, Prof., Graz
* Aigner Martin, Ass. Prof., Detroit (II)
Akaza Tsuchi, Prof., Kanazawa (II)
Akutowicz Edwin, Prof., Montpellier (II)
Akutowicz Ingrid
Albrecht Rudolf, Prof., Graz
Altman Eckard, Dipl. Math., Bonn (I)
Amman André, Prof., Genf (II)
* Andjelić Tatomir, Prof., Beograd (IV)
Arnold Ludwig, Ass., Stuttgart (V)
* Aumann Georg, Prof., München
Aumann Lidy
* Aykan Faruk, Prof., Istanbul
Basyen Pieter, Prof., Amsterdam (I)
* Bailer Othmar, Prof., München (III)
Bandemer Hans Walter, Prof., Freiburg
Banica Constantin, Cher. Sci., Bukarest (II)
Barkow Klaus, Bibl. Ass., Bremen
Barkow Gerbert
* Barner Martin, Prof., Freiburg
* Baron Gott, Ass., Wien (III)
* Baron Werner, Dipl. Ing., Wien
Basley Norman, Dr., Genf
* Bauer Karl Wilhelm, Prof., Bonn (II)
Bauer Elisabeth
* Bauer Walter, Wiss. H., Wien
Baum Dieter, Dipl. Math., Berlin
Baum Adelheid
Baumgartner Erich, Ass., Würzburg
Becker Horst, Ass. Prof., Madison (II)
Beer Susanne, Ass., Wien (I)
Behne Jürgen, Ass., Berlin
Benz Walter, Prof., Bochum
Berghahn Hans Horst, Dipl. Math., München
Bergmann Arthur, Wiss. Rat, Würzburg
Bernsleithner Ernst, Prof., Wien (VII)
Biallas Dieter, Ass., Hamburg (III)
* Biallas Anke
* Bilinski Stanislo, Prof., Zagreb (III)
* Bilinski Zlatko
* Blaunš Danilo, Prof., Zagreb
Blauša Sofia
Blind Gerdt, Akad. Rat, Stettgart (III)
* Boerner Hermann, Prof., Gießen
Boers Arle, Dr., Delft (I)
Eisele Carl, Verleger, Basel
Eilers Erich W., Prof., Fredericton (I)
Eilers Elisabeth
Elster Karl Heinz, Prof., Ilmenau (III)
Emersbach Otto, Prof., Greifswald (II)
Engel Wolfgang, Prof., Rostock
Erwe Friedhelm, Prof., Aachen (II)
Ewald Günter, Prof., Bochum
Fabian Ise, Stud. Rat, Wien
Fages France, Dr., Paris
Feichtinger Gustav, Ass., Bonn (V)
Feichtinger Ingrid
Ferrari d'Occhilupo Konrad, Prof., Wien (VII)
Fischer Herbert, Prof., Graz
Fieger Werner, Doz., Karlsruhe
Fieger Utz
Finck v. Finkenstein Karl, Dipl. Math., München (VI)
Fischer Dieter, Dr., Linz
Fischer Gerdt, Ass., München (III)
Fischer Kurt, Ass., Stuttgart (V)
Fleckenstein Joachim, Prof., München (VII)
Fiegel Robert, Ass., Stuttgart
Fleischer Wilhelm, Ass., Salzburg
Flor Peter, Doz., Wien (I)
Florian August, Prof., Salzburg
Florian Helmut, Prof., Graz
Forster Otto, Doz., München
Frank Wilhelm, Min. Rat, Wien
Freyd Géza, Dr., Budapest (II)
Friton Leo, Dr., Hart
Fuchs Theodor, Ing., Wien (VI)
Funk Paul, Prof., Wien (III)
Gackstätter Fritz, Ass., Würzburg
Galambos János, Lektor, Ghana (V)
Gaszt Günter, Ass., Wien
Gelosofer Udo, Wiss. H., Graz
Gell Günter, Ass., Graz
Germer Herrnig, Dr., Berlin
Giering Oswald, Akad. Rat, Stuttgart (III)
Gladen Raoul-François, Ispra (VI)
Gladen Théodorie
Gladen Yvonne
Gorenflo Rudolf, Ass., München (VI)
Grosner Wolfgang, Prof., Innsbruck (II)
Grö tz Wolfgang, Ass., Braunschweig (I)
Großer Siegfried, Ass., Prof., Minnesota (I)
Grootemeier Peter, Prof., Berlin
Grottemeyer Sigrid
Gru ca Peter, Ass., Wien (III)
Haberfellner Walter, Dr., Linz
Haack Wolfgang, Prof., Berlin
Haack Marianne
Haf Herbert, Dr., Stuttgart
Lehmann Klaus, Ass., Berlin (II)
Lehmann Renate
Lehnigk Siegfried, Prof., Huntsville
Lehnigk Frieda
Leicht J., Herbert, Doz., Heidelberg
Leichtweiß Kurt, Prof., Berlin
Leis Rolf, Prof., Bonn (IV)
Leis Gisela
Lelong Pierre, Prof., Paris (II)
* Lensse Josef, Prof., München
 Lense Eugenie
* Lenz Hansfried, Prof., München
* Lesky Peter, Prof., Stuttgart
Lidl Rudolf, Dr., Wien
Liebscher Heinz, Stud. Rat, Graz
* Lindel Roman, Doz., Innsbruck (V)
Lindemann Hans, Ass., München
Linder Heinz, Ass., Braunschweig
Linsen Hans, Prof., Gießen
* Lochs Gustav, Prof., Innsbruck (VII)
Lochs Herta
* Loostra Frans, Prof., Delft (I)
Loostra Wimke
* Lüsch Friedrich, Prof., Stuttgart
Lüsch Elisa
Lutz Albert, Dipl. Math., Ulm
Makal Endre, Dr., Budapest (II)
Maklet Henri, Dr., Paris
Malet Michèle
Malet Christine
Mallios Anastasios, Ass. Prof., Athen (III)
Manamitsch Volker, Ass., München
* Mangeron Dumitra, Prof., Iasi
Mangeron Maria
Mann Horst, Ass., Darmstadt
Marie Volislav, Ass. Prof., Novi Sad (II)
Marč Desa
Marsal Dietrich, Dr., Hannover (VI)
Marsch Gerhard, Dkfm., Wien
* Maseart Henri, Prof., Toulouse (III)
Mathiak Karl, Ass., Braunschweig
Mäurer Helmut, Doz., Darmstadt
* Meierer Klaus, Ass., Wien
Meißl Peter, Doz., Wien
Meißner Hartwig, Dr., Hamburg (VI)
Melchior Ulrich, Dipl. Math., Bochum
* Meulenholds Barend, Prof., Delft (II)
Meulenholds Korria
Meyberg Kurt, Ass., München (I)
Meyer Karl, Ass., München (III)
Meyer Christa
Meyer Peter, Ass., Braunschweig (III)
Michalícek Johannes, Ass., Hamburg (II, V)

* Mikolasch Rainer, Wiss. H., Graz
Michler Gerhard, Doz., Tübingen (I)
Miefeld Jürgen, Ass., Hamburg (III)
Miefeld Dagmar
* Mitsch Heinz, Ass., Wien (I)
Mittenwal Lotrop, Dr., Frankfurt
Mittenwal Inge
* Molk Johannes, Ass., Graz
Müller Herbert, Ass., Bonn (I)
Moshhammer Heinrich, Stud. Rat, Linz
* Mück Rudolf, Ass., Wien
* Müller Hans Robert, Prof., Braunschweig
 Müller Liselotte
Müller Manfred, Ass., Stuttgart (II)
* Müller Winfried, Ass., Wien (I)
Murgescu Ioan, Dr., Iasi (III)
Nádenik Zbynek, Doz., Prag (III)
Neubauer Gerhard, Doz., Heidelberg (II)
* Nice Vílko, Prof., Zagreb (II)
Nickel Karl, Prof., Karlsruhe
Nickel Gunhild
* Niederreiter Harald, Wiss. H., Wien (I)
Nießen Heinz, Ass., Köln (II)
* Nihan Wilfried, Prof., Wien (I, VII)
Nolte Walter, Doz., Gießen
Nolte Margaret
Novák Josef, Prof., Prag (V)
Orlicz Władysław, Prof., Poznań (II)
Orlov Konstantin, Prof., Belgrad (VI)
Pahlings Herbert, Ass., Gießen (I)
Papacosas Georges, Dipl. Math., Brüssel
Peschl Ernst, Prof., Bonn
Peschl Maria
Pesi Otto, Dr., Wien
Peschl Martina
* Peters Klaus, Wiss. H., Heidelberg
Pfister Albrecht, Doz., Göttingen (I)
* Pecaric Sophie, Prof., Neuchâtel (I)
Pichler Franz, Ass., Innsbruck (IV)
Pichler Horst, Dipl. Math., Linz
Pickert Günter, Prof., Gießen
Pickert Anneliese
Pieper Irene, Dr., Hamburg (I)
Pietsch Albrecht, Prof., Jena (II)
Pignedoli Antonio, Prof., Bologna (VI)
* Pilz Günter, Ass., Wien (I)
* Pirl Max, Prof., Köln
Ploewe Klaus, Ass., Köln
* Rado Richard, Prof., Reading (II)
Rado Luise
Ramsdott Karl, Doz., München
Ratschek Helmut, Ass., Düsseldorf
Reich Axel, Dipl. Math., Göttingen (II)
ÖSTERREICHISCHE MATHEMATISCHE GESELLSCHAFT
Gegründet 1903

SEKRETARIAT: 1040 WIEN, KARLSPL. 13 (TECHNISCHE HOCHSCHULE)
TELEFON 65 70 41 — POSTSPAR KASSENKONTO 82 906

Vorstand des Vereinsjahres 1969/70

Vorsitzender: Prof. Dr. H. Brauner (T. H. Wien)
Stellvertreter: Prof. Dr. W. Böhm (T. H. Wien)
Herausgeber der IMN: Prof. Dr. W. Wunderlich (T. H. Wien)
Schriftführer: Ass. Dr. K. Kreiter (Univ. Wien)
Kassen: Doz. Dr. H. Vogler (T. H. Wien)
Stellvertreter: Ass. Dr. K. Meier (T. H. Wien)

Beiträge:
- Prof. Dr. A. Adam (Hochsch. Linz)
- Prof. Dr. G. Bruckmann (Univ. Wien)
- Prof. Dr. A. Florian (Univ. Salzburg)
- Prof. Dr. W. Grobner (Univ. Innsbruck)
- Prof. Dr. E. Hlawka (Univ. Wien)
- Prof. Dr. F. Hohenberg (T. H. Graz)
- Prof. Dr. J. Krames (T. H. Wien)
- Dr. J. Laub (Wien)
- LSI Dr. L. Pezzar (Wien)

Jahresbeitrag für in- und ausländische Mitglieder:
S 50.— (2 US-Dollar)

Sitzort der Herausgeber und Verlagst: Österreichische Mathematische Gesellschaft
Für den Inhalt verantwortlich: Prof. Dr. W. Wunderlich, beide Technische Hochschule Wien IV.
Druck: Albert Kalschmidt, Wien III, Kollegenstr. 7