Division mit Rest und Division Zwei wesentlich verschiedene Rechenoperationen

Franz Pauer

Universität Innsbruck

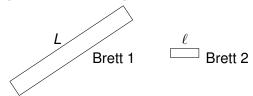
25. April 2025

Inhalt

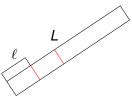
- Zwei Aufgaben zu einem Brett
- Grundvorstellungen für die zwei Rechenoperationen
- Division mit Rest
- Division
- Division mit Rest von nat. Zahlen in Zifferndarstellung
- Näherungsweises Dividieren von Dezimalzahlen
- Division mit Rest f
 ür negative Zahlen und Polynome
- Division für rationale Funktionen und reellwertige Funktionen
- Résumé

Zwei Aufgaben zu einem Brett

► Rechteckige Bretter mit Längen *L* und ℓ

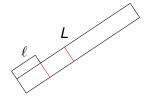


▶ Wieviele rechteckige Bretter der Länge ℓ (und mit derselben Breite wie Brett 1) kann man höchstens aus Brett 1 erhalten?



Zwei Aufgaben einem Brett

▶ Praktische Lösung mit einer Säge: Schneide - am Rand beginnend - vom Brett 1 (mit Länge L) solange rechteckige Bretter der Länge ℓ ab, wie das möglich ist.



▶ "Rechnerisch" formuliert: Subtrahiere die Länge ℓ so oft wie möglich von der Länge L.

$$L = q \cdot \ell + r$$
 und $r < \ell$

Division mit Rest von L durch ℓ , bedeutet: "so oft wie möglich subtrahieren".

Zwei Aufgaben zu einem Brett

- Das rechteckige Brett 1 hat die Länge L und die Breite 1,7 dm.
- Säge ein rechteckiges Brett derselben Breite so ab, dass dessen Flächeninhalt 3 dm² ist.

► Also: Löse die Gleichung

$$1,7\cdot x=3.$$

Zwei Aufgaben zu einem Brett

Praktische Lösung mit einem Maßstab, einem Lineal und einem Dreieck.

▶ Rechnerische Lösung: Löse die Gleichung $1, 7 \cdot x = 3$. Löse zuerst $1, 7 \cdot x = 1$, dh.: Berechne die zu 1, 7 inverse Zahl, Schreibweise: 1:1,7 oder $1,7^{-1}$ oder 1/1,7.

Dann:

$$x = 1, 7^{-1} \cdot 1, 7 \cdot x = 1, 7^{-1} \cdot 3$$
.

▶ Division von 3 durch 1,7 ist Multiplikation von 3 mit 1, 7^{-1} .

Grundvorstellungen DmR

- Grundvorstellung zur Division mit Rest (DmR): mehrfache Subtraktion (so oft wie möglich).
- Wer subtrahieren kann, kann auch mit Rest dividieren.
- Analogie zu "Multiplikation ist mehrfache Addition"
- Voraussetzungen für die DmR:
 - Subtraktion
 - Ordnungsrelation
 - Ergebnis nach endlich vielen Schritten (daher ist DmR durch 0 nicht möglich)
- ▶ Voraussetzungen in $\mathbb{N}, \mathbb{Q}_{\geq 0}, \mathbb{R}_{\geq 0}$ und in Größenbereichen wie Länge, Volumen, Masse, . . . erfüllt, nicht erfüllt in \mathbb{C} .

Grundvorstellungen Division

- Grundvorstellung zur Division: Multiplikation mit der inversen Zahl des Divisors, "Umkehrung der Multiplikation".
- Wer multiplizieren kann und die zum Divisor inverse Zahl kennt, kann auch dividieren.
- Analogie zu "Subtraktion ist Umkehrung der Addition"
- Voraussetzungen für die Division:
 - Multiplikation
 - Existenz der zum Divisor inversen Zahl (und Kenntnis derselben)
- Ordnungsrelation nicht erforderlich.
- Inverse Zahlen existieren in \mathbb{Q} , \mathbb{R} , \mathbb{C} nur für 0 nicht. (Die Gleichung $0 \cdot x = 1$ hat keine Lösung, weil $0 \cdot x = 0$ ist).
- In N hat nur 1 eine inverse Zahl, daher hat die Division dort keine Bedeutung.

Division mit Rest

Im weiteren nur DmR von natürlichen Zahlen. (Analog in $\mathbb{Q}_{\geq 0}, \mathbb{R}_{\geq 0}$ und gewissen Größenbereichen).

► Gegeben zwei natürliche Zahlen c, d mit $d \neq 0$. Gesucht sind *zwei* natürliche Zahlen q, r so, dass

$$c = q \cdot d + r$$
 und $r < d$.

q ganzzahliger Quotient und r Rest (von c nach DmR durch d).

- Algorithmus für DmR: Subtrahiere d solange von c, wie die Differenz nicht negativ ist. Die Anzahl der Subtraktionen ist der ganzzahlige Quotient q, die letzte nicht negative Differenz ist der Rest r.
- Wichtig: DmR verbindet die drei "Grundstrukturen" in ℕ: Addition (+), Multiplikation (·) und Ordnungsrelation (<).</p>

Anwendungen der DmR in der Mathematik

- Bestimmung der Zifferndarstellung einer natürlichen Zahl
- Euklidischer Algorithmus: durch mehrfache DmR wird der ggT zweier natürlicher Zahlen berechnet, wichtig zum Kürzen von Bruchzahlen.
- ► Erweiterter Euklidischer Algorithmus: zur Berechnung ganzzahliger Lösungen der Gleichung a · x + b · y = c (lösbar, wenn ggT(a, b) Teiler von c ist), wird z. B. beim RSA-Verfahren für die Verschlüsselung des PIN am Bankomat verwendet.
- Jedes effiziente Verfahren zum Rechnen mit ganzen Zahlen verwendet DmR, EA oder EEA. Deren gute Implementierung ist für CAS sehr wichtig.

Anwendungen der DmR im Alltag

"Messen": Wieviele Gläser mit Volumen v können höchstens mit einem Krug Wasser mit Volumen V gefüllt werden?

Wieviel bleibt dann über?

- Fülle mit dem Krug soviele Gläser wie möglich (subtrahiere v so oft von V wie möglich).
- Der ganzzahlige Quotient ist die Anzahl der gefüllten Gläser, das Volumen des im Krug verbliebenen Wassers ist der Rest.

Anwendungen der DmR im Alltag

- "Teilen ": Verteile möglichst viele Zuckerln aus einem Sack so auf 7 Kinder, dass jedes Kind gleich viele bekommt. Wieviele bekommt jedes Kind? Wieviele bleiben über?
 - Nimm so oft je 7 Zuckerln aus dem Sack wie das möglich ist (Messen; mehrfache Subtraktion von 7 von der Anzahl der Zuckerln im Sack).
 - Gib nach jeder Entnahme jedem Kind ein Zuckerl.
 - Höre auf, sobald weniger als 7 Zuckerln im Sack sind. Der ganzzahlige Quotient ist die Anzahl der Zuckerln, die jedes Kind bekommen hat. Der Rest ist die Anzahl der Zuckerln, die noch im Sack sind.

► Eine Zahl c durch eine Zahl $d \neq 0$ dividieren, heißt die Gleichung

$$d \cdot x = c$$

lösen (das Produkt zweier Zahlen und ein Faktor sind bekannt, berechne den anderen Faktor)

▶ Wenn die Gleichung $d \cdot x = 1$ im betrachteten Zahlbereich eine Lösung hat (also die zu d inverse Zahl d^{-1} existiert), dann hat für jede Zahl c die Gleichung $d \cdot x = c$ eine Lösung, und zwar

$$d^{-1} \cdot c$$
.

Diese heißt *Quotient* von c und d, Schreibweise: c: d oder c/d.

► c durch d dividieren heißt: c mit der zu d inversen Zahl $1/d = d^{-1}$ multiplizieren.

► Eine Bruchzahl (oder rationale Zahl) $\frac{a}{b}$ ($b \neq 0$) hat eine dazu inverse Zahl, wenn ihr Zähler a nicht 0 ist:

$$\frac{a}{b} \cdot \frac{b}{a} = \frac{a \cdot b}{b \cdot a} = 1.$$

- ▶ Die zu $\frac{a}{b}$ inverse Zahl ist der Kehrwert $\frac{b}{a}$. Durch die Bruchzahl $\frac{a}{b}$ zu dividieren heißt, mit ihrem Kehrwert multiplizieren.
- Beispiel: Mit welcher Zahl muss man ¹¹/₂ multiplizieren, um ³/₇ zu bekommen?

$$\frac{3}{7}:\frac{11}{2}=\frac{3}{7}\cdot\frac{2}{11}=\frac{6}{77}!$$

- ▶ Jede natürliche Zahl ist eine Bruchzahl: $n = \frac{n}{1}$
- ▶ Sei $n \neq 0$.

$$m: n = \frac{m}{1}: \frac{n}{1} = \frac{m}{1} \cdot \frac{1}{n} = \frac{m}{n}$$

Diese Division ist erst *nach* der Erweiterung von $\mathbb{N}\subset\mathbb{Q}_{\geq 0}$ möglich. Der Bruchstrich ist *kein* Divisionszeichen!

"Doppelbruch":

$$\frac{\frac{c}{d}}{\frac{a}{b}} := \frac{c}{d} : \frac{a}{b} = \frac{c}{d} \cdot \frac{b}{a} = \frac{c \cdot b}{d \cdot a}$$

Der Strich zwischen den Brüchen ist *kein* Bruchstrich, sondern ein Divisionszeichen.

(Zähler und Nenner von Bruchzahlen sind ganze Zahlen!)

► Beispiel:

$$\frac{\frac{2}{3}}{\frac{5}{4}} := \frac{2}{3} : \frac{5}{4} = \frac{2}{3} \cdot \frac{4}{5} = \frac{8}{15}$$

Division von reellen Zahlen, die nicht rationale Zahlen sind:

$$0 \neq z = \lim_{n \to \infty} \frac{a_n}{b_n}$$
, wobei $0 \neq a_n \in \mathbb{Z}, 0 \neq b_n \in \mathbb{Z}$

$$z^{-1} = \lim_{n \to \infty} \frac{b_n}{a_n}$$

Division durch z heißt, mit z^{-1} multiplizieren.

► Beispiel:

$$\pi = \lim_{n \to \infty} \prod_{k=1}^{n} \frac{8k^2}{4k^2 - 1}$$

(Wallissches Produkt)

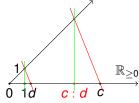
$$\pi^{-1} = \lim_{n \to \infty} \prod_{k=1}^{n} \frac{4k^2 - 1}{8k^2}$$

Falls reelle Zahlen als Punkte auf einer Zahlengeraden aufgefasst werden, werden DmR und Division geometrisch angegeben.

- ▶ Seien $c, d \in \mathbb{R}_{>0}$ Punkte der Zahlengeraden.
- Division mit Rest von c durch d:

$$c = 4 \cdot d + r, r < d$$

Division von *c* durch *d*:



Division von komplexen Zahlen:

Sei $a + bi \neq 0$, insbesondere $a^2 + b^2 \neq 0$.

$$(a+bi)\cdot(a-bi)=a^2+b^2\in\mathbb{R},$$

also ist

$$(a+bi)^{-1} = (a^2+b^2)^{-1} \cdot a - (a^2+b^2)^{-1} \cdot bi$$

Beispiel:

$$(2+3i): (4+i) = (2+3i)\cdot (\frac{4}{17}-\frac{1}{17}i) = \frac{11}{17}+\frac{10}{17}i$$

- Welche Frage ist hier sinnvoll?
 - Wie oft ist 4 + i in 2 + 3i enthalten? oder
 - ► Mit welcher Zahl muss ich 4 + *i* multiplizieren, um 2 + 3*i* zu erhalten?
- Unterricht in der Sekundarstufe 1 muss vorausschauen und die richtige Fährte legen: Passen meine Formulierungen und Erklärungen auch für das, was später darauf aufbauen soll?

- Division von "algebraischen Zahlen":
- ▶ Sei $a + b\sqrt{2} \neq 0$ und $a, b \in \mathbb{Q}$, dann ist $a^2 2 \cdot b^2 \neq 0$.

$$(a+b\sqrt{2})\cdot(a-b\sqrt{2})=a^2-2\cdot b^2\in\mathbb{Q},$$

also ist

$$(a+b\sqrt{2})^{-1}=(a^2-2b^2)^{-1}\cdot a-(a^2-2b^2)^{-1}\cdot b\sqrt{2}$$

$$(2+3\sqrt{2}):(4+\sqrt{2})=(2+3\sqrt{2})\cdot(\frac{4}{14}-\frac{1}{14}\sqrt{2})=\frac{1}{7}+\frac{5}{7}\sqrt{2}$$

Zifferndarstellung

▶ Zu jeder natürlichen Zahl z > 0 gibt es eindeutig bestimmte natürliche Zahlen n, z_n, \dots, z_1, z_0 so, dass

$$z = z_n \cdot 10^n + \ldots + z_1 \cdot 10^1 + z_0$$

und
$$0 \le z_n, \dots, z_1, z_0 < 10, z_n \ne 0.$$

Schreibweise:

$$z=z_nz_{n-1}\dots z_1z_0$$

(Dezimal-)Zifferndarstellung von z, z_i i-te (Dezimal-)Ziffer von z

Beispiel:
$$2025 = 2 \cdot 1000 + 0 \cdot 100 + 2 \cdot 10 + 5$$

Analog mit 2 statt 10: *Binärziffern*, nur 0 und 1
Beispiel: zweitausendfünfundzwanzig = $= 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^3 + 1 = 11111101001$

Zifferndarstellung

- Ermittlung der Zifferndarstellung zur Basis 10 bzw. 2 durch mehrfache Division mit Rest durch 10 bzw. 2
- Beispiel: Die Anzahl der Euro-Münzen in einem Sack sei z. Bestimme Dezimalziffern von z!
 - ▶ Bilde so oft wie möglich Gruppen von je 10 Euro-Münzen. Die Anzahl der übrigbleibenden Münzen ist z_0 .
 - Bilde so oft wie möglich Gruppen von je 10 "Zehnergruppen". Die Anzahl der übrigbleibenden Zehnergruppen ist z₁.
 - usw.
- Zur Ermittlung der Binärziffern bilde "Zweiergruppen".

DmR von Zahlen in Zifferndarstellung

- Algorithmus für die DmR von natürlichen Zahlen in Zifferndarstellung
- ► Grundidee: Kann man d von c q-mal subtrahieren, dann kann man d von 10 · c bzw. 100 · c bzw. . . . mindestens 10 · q - mal bzw. 100 · q - mal bzw. . . . - mal subtrahieren.
- Grundschritt bei der DmR: DmR mit einstelligem Quotienten (nicht mit einstelligem Divisor!).
- DmR mit einstelligem Quotienten (Grundschritt, muss zuerst eingeübt werden !): höchstens 9 Subtraktionen oder "Raten und Überprüfen".

DmR von Zahlen in Zifferndarstellung

Beispiel: DmR von 2025 durch 12.

$$2025 = 20 \cdot 100 + 25$$

 $20 = 1 \cdot 12 + 8$, also $2000 = 100 \cdot 12 + 800$ und $2025 = 100 \cdot 12 + 825$

Weiter mit 825 statt 2025: $825 = 82 \cdot 10 + 5$ $82 = 6 \cdot 12 + 10$, also $820 = 60 \cdot 12 + 100$ und $825 = 60 \cdot 12 + 105$

Weiter mit 105: $105 = 8 \cdot 12 + 9$

$$2025 = 100 \cdot 12 + 60 \cdot 12 + 8 \cdot 12 + 9 = 168 \cdot 12 + 9$$

- Dank der Zifferndarstellung: nur 15 anstatt 168 Subtraktionen.
- ▶ In der Volksschule "schriftliche Division" in platzsparender Schreibweise:

DmR von Zahlen in Zifferndarstellung

- Beispiel zur DmR mit durch Binärziffern dargestellte Zahlen:
- Rechnerisch besonders einfach, weil Grundschritt aus höchstens einer Subtraktion besteht.
 Nachteil für Menschen: Zahlen haben (sehr) viele Ziffern.

```
11111101001 : 1100 = 101010001
111
1111
110
110
100
100
1001 Rest
```

- Bruchzahlen (rationale Zahlen), deren Nenner eine Zehnerpotenz (bzw. Zweierpotenz) sein kann, heißen Dezimalzahlen (bzw. Binärzahlen).
- Beispiele:

$$\frac{3}{100}$$
, $\frac{9987}{1000}$, $\frac{15}{30} = \frac{5}{10}$, $\frac{7}{5} = \frac{14}{10}$, $\frac{3}{8} = \frac{375}{1000}$, 79

sind Dezimalzahlen,

$$\frac{1}{3}$$
, $\frac{45678}{7000}$, $\frac{12}{233}$

sind keine Dezimalzahlen.

Eine maximal gekürzte Bruchzahl ist genau dann eine Dezimalzahl, wenn nur 2 oder 5 Primfaktoren ihres Nenners sind.

Platzsparende Schreibweise für Dezimalzahlen (Clavius im 16. Jhd., oder Bianchini im 15. Jhd.):

$$0,03 := \frac{3}{100}, \quad 9,987 := \frac{9987}{1000}, \quad 0,1 := \frac{1}{10}$$

Nicht jede Bruchzahl ist eine Dezimalzahl, aber jede Bruchzahl kann beliebig genau durch eine Dezimalzahl angenähert werden.

- ▶ Gegeben: Eine durch Zähler und Nenner dargestellte positive Bruchzahl $\frac{a}{b}$ und eine natürliche Zahl n. Berechne einer Dezimalzahl z mit $0 \le \frac{a}{b} z < \frac{1}{10^n}!$
- Division mit Rest von $a \cdot 10^n$ durch b: $a \cdot 10^n = q \cdot b + r, r < b.$ $\frac{a}{b} = \frac{a \cdot 10^n}{b \cdot 10^n} = \frac{q \cdot b + r}{b \cdot 10^n} = \frac{q \cdot b}{b \cdot 10^n} + \frac{r}{b \cdot 10^n} = \frac{q}{10^n} + \frac{r}{b \cdot 10^n}$ Die gesuchte Dezimalzahl ist $\frac{q}{10^n}$. Wegen r < b ist $\frac{r}{b \cdot 10^n} < \frac{1}{10^n}$.
- ▶ Beispiel: $\frac{a}{b} = \frac{17}{7}$, n = 3. 17000 = 2428 · 7 + 4, also $\frac{17}{7} \approx 2,428$

und $\frac{17}{7}-2,428<\frac{1}{1000},$ genauer Fehler $\frac{4}{7000}$.

- Summen, Differenzen und Produkte von Dezimalzahlen sind Dezimalzahlen.
- Die zu einer Dezimalzahl inverse Zahl (ihr Kehrwert) ist nur dann wieder eine Dezimalzahl, wenn nach maximalen Kürzen auch der Zähler nur 2 oder 5 als Primfaktoren hat.
- Division von Dezimalzahlen:

Der Quotient von Dezimalzahlen (\neq 0) ist immer eine Bruchzahl (rationale Zahl), aber nicht immer eine Dezimalzahl.

Er kann aber (mit Hilfe einer DmR) durch eine Dezimalzahl beliebig genau angenähert werden.

Beispiel:

$$0,023:45,67 = \frac{23}{1000}:\frac{4567}{100} = \frac{23}{1000}\cdot\frac{100}{4567} = \frac{23}{45670}$$

Exaktes Ergebnis der Division (rationale Zahl, aber nicht Dezimalzahl).

Näherung durch eine Dezimalzahl mit Hilfe einer DmR, n = 6: 23000000 = 503 ⋅ 45670 + 27990, also

$$\frac{23}{45670} \approx \frac{503}{1000000} = 0,000503\,,$$

Fehler kleiner als 0,000001.

Erweiterungen von DmR und Division

▶ DmR in $\mathbb N$ bzw. $\mathbb R_{\geq 0}$ kann auf $\mathbb Z$ bzw. $\mathbb R$ erweitert werden. Nicht einheitlich.

Beispiel:
$$-17 = (-4) \cdot 4 - 1$$
 (Betrag des Restes möglichst klein) oder $-17 = (-5) \cdot 4 + 3$ (Rest positiv)

DmR für Polynome: mehrfache Subtraktion von geeigneten Vielfachen des Divisors.

$$c$$
, d Polynome, $d \neq 0$: es gibt Polynome q , r mit $c = q \cdot d + r$ und $[r = 0 \text{ oder } grad(r) < grad(d)]$

Erweiterungen von DmR und Division

▶ Beispiel:
$$c = 3x^3 + x - 1$$
, $d = x - 2$

$$c - 3x^2 \cdot d = 6x^2 + x - 1$$

$$(6x^2 + x - 1) - 6x \cdot d = 13x - 1$$

$$(13x - 1) - 13 \cdot d = 25$$

$$0 = grad(25) < grad(d) = 1$$
Also:
$$c = (3x^2 + 6x + 13) \cdot d + 25$$

Erweiterungen von DmR und Division

- Division für rationale Funktionen: Multiplikation mit dem Kehrwert
- ► Beispiel:

$$\frac{x+1}{x^2+x-1}:\frac{x^3+x}{3x-2}=\frac{(x+1)\cdot(3x-2)}{(x^2+x-1)\cdot(x^3+x)}$$

Division für reellwertige Funktionen
 Eine Funktion f: ℝ → ℝ hat eine inverse Funktion, wenn sie keine Nullstellen hat.
 Zu f inverse Funktion 1/f ordnet jeder Zahl x die zu f(x) inverse Zahl f(x)⁻¹ = 1/f(x) zu.

▶ Beispiel: Exponentialfunktionen sind invertierbar. $a \in \mathbb{R}_{>0}$, $exp_a : \mathbb{R} \longrightarrow \mathbb{R}$ mit $exp_a(x) := a^x$ dazu inverse Funktion (nicht Umkehrfunktion!) $1/exp_a = exp_{a^{-1}}$ mit $exp_{a^{-1}}(x) = a^{-x}$. Division durch exp_a ist Multiplikation mit $exp_{a^{-1}}$.

Résumé

- In N: nur DmR (nur 1 hat inverse Zahl)
 - DmR ist mehrfache Subtraktion, berechnet zwei natürliche Zahlen.
 - Lösung von $c \cdot x = d$ nur in Sonderfällen (Rest 0) möglich.
 - Divisionsalgorithmus für Zahlen in Zifferndarstellung, Grundschritt ist DmR mit einstelligem Quotienten
- ▶ In C: nur Division (keine Ordnungsrelation)
 - Division ist Multiplikation mit der inversen Zahl des Divisors, berechnet *eine* Zahl, die Lösung von $c \cdot x = d$.
 - alle Zahlen ≠ 0 haben inverse Zahl, kann leicht ermittelt werden.

Résumé

- In Q: DmR und Division
 - ▶ DmR (in $\mathbb{Q}_{\geq 0}$) berechnet durch mehrfache Subtraktion eine natürliche Zahl (ganzzahliger Quotient) und eine rationale Zahl (Rest).
 - Division ist Multiplikation mit dem Kehrwert des Divisors $(\neq 0)$, berechnet die Lösung von $c \cdot x = d$ (eine rationale Zahl).
 - Quotient von Dezimalzahlen ist rationale Zahl, aber im allg. nicht Dezimalzahl. Durch Zähler und Nenner dargestellte Zahl kann durch DmR (von natürlichen Zahlen) durch Dezimalzahl angenähert werden.
 - ▶ Beispiel: DmR 0,5: 3 = 0 Rest 0,5, Division 0,5: 3 = $\frac{1}{6}$ ≈ 0,166

Literatur

Van Brummelen, G.: Decimal fractional numeration and the decimal point in 15th-century Italy. Historia Mathematica 66 (2024), 1-13

Forster, O.: Analysis 1. vieweg Verlag, 4. Auflage (1983)

Pauer, F.: Algorithmen und algorithmisches Denken im Mathematikunterricht. Schriftenreihe zur Didaktik der Mathematik der ÖMG Nr. 55 (2023), 101-116

Pauer, F.: Komplexe Zahlen.

Schriftenreihe zur Didaktik der Mathematik der ÖMG Nr. 54 (2022), 53-70

Pauer, F., Stampfer, F.: Rationale Zahlen und rationale Funktionen: Was ist ihnen gemeinsam? Wie werden sie dargestellt?

Schriftenreihe zur Didaktik der Mathematik der ÖMG Nr. 51 (2018), 45-55

Pauer, F.: "Wurzel aus 2" und "Wurzel aus -1" - Was ist das und wie rechnet man damit?

Schriftenreihe zur Didaktik der Mathematik der ÖMG Nr. 41 (2009), 71-84

Pauer, F.: Division mit Rest - der heimliche Hauptsatz der Algebra. Schriftenreihe zur Didaktik der Mathematik der ÖMG Nr. 37 (2005), 100-111

Pauer, F.: Algebra und Geometrie im Schulunterricht. 3. Auflage. Skriptum. Universität Innsbruck 2019

Danke für die Aufmerksamkeit!

http://www.uibk.ac.at/mathematik/personal/pauer/

franz.pauer@uibk.ac.at